Improving the efficiency of metal-bonded diamond abrasive end tools by improving manufacturing technology

OBRABOTKAMETALLOV MATERIAL SCIENCE Том 20 № 3 2018 EQUIPMEN . INSTRUM TS Vol. 3 No. 2 2021 welding. This indicates the possibility of using medium-carbon quenched steel with a hardness of 45...55 HRC as a shank material. All this indicates the possibility of using medium-carbon quenched high-quality steel with a hardness of 45..55 HRC as a shank material and the use of the proposed technology for manufacturing diamond grinding heads on a metal bond, which will increase the joint efficiency between the case and the diamond working part and reduce costs and simplify tool making processes, thereby increasing the diamond end abrasive tool efficiency. References 1. Vladimirova Yu.O., Shalunov E.P. [Development of heat- and wear-resistant nano-composite material based on powdered copper and its manufacturing technology for pistons of injection molding machines]. Novye materialy i perspektivnye tekhnologii : sbornik materialov 4-go mezhdistsiplinarnogo nauchnogo foruma [Proceedings of the 4th Interdisciplinary Scientific Forum “New materials and advanced technologies”]. Moscow, 2018, vol. 1, pp. 106–110. (In Russian). 2. Shalunov E.P., MatrosovA.L., Lipatov Ya.M., Berent V.Ya. Dispersno-uprochnennyi kompozitsionnyi material dlya elektrokontaktnykh detalei [Dispersion-strengthened composite material for electric contact parts]. Patent RF, no. 2195511, 2002. 3. Shalunov E.P. Nanostrukturnye materialy na osnove poroshkovoi medi [Nanostructured materials based on powder copper]. Liteishchik Rossii = Foundrymen of Russia , 2016, no. 2, pp. 37–40. 4. Rechenko D.S., PopovA.Y., Belan D.Y., KuznetsovA.A. Hard-alloy metal-cutting tool for the finishing of hard materials. Russian Engineering Research , 2017, vol. 37, no. 2, pp. 148–149. DOI: 10.3103/S1068798X17020162. 5. Smirnov V.M., Shalunov E.P. The possibilities of creation and the prospects of application of a binder with the matrix-filled structure “tin bronze – the mechanically alloyed granules” for production of diamond tools. Materials Today: Proceedings , 2019, vol. 11, pt. 1, pp. 270–275. DOI: 10.1016/j.matpr.2018.12.142. 6. Salova D.P., Vinogradova T.G., Kuptsov M.V., Yurpalov D.A., Spiridonova I.S. [Research and implementation in production of developments on internal grinding of deep holes]. Vysokie tekhnologii v mashinostroenii : materialy XVI Vserossiiskoi nauchno-tekhnicheskoi konferentsii [Proceedings of the ХVI All-Russian scientific and technical conference “High technologies in mechanical engineering”], Samara, 2017, pp. 33–35. (In Russian). 7. Bratan S., Vladetskaya E., KharchenkoA. Improvement of quality of details at round grinding in the conditions of a floating workshop. MATEC Web of Conferences , 2017, vol. 129, p. 01083. DOI: 10.1051/matecconf/201712901083. 8. Bratan S., Kolesov A., Roshchupkin S., Stadnik T. Theoretical-probabilistic model of the rotary belt grinding process. MATEC Web of Conferences , 2017, vol. 129, p. 01078. DOI: 10.1051/matecconf/201712901078. 9. Brzhozovskii B.M., Zakharov O.V. Obespechenie tekhnologicheskoi nadezhnosti pri bestsentrovoi abrazivnoi obrabotke [Provision of technological reliability with centerless abrasive processing]. Saratov, 2010. 216 p. ISBN 978-5-7433-2220-6. 10. Zhang W., Liu Ch., Yuan Y., Zhang P., Fan X., Zhu M. Probing the effect of abrasive wear on the grinding performance of rail grinding stones. Journal of Manufacturing Processes , 2021, vol. 64, pp. 493–507. DOI: 10.1016/j. jmapro.2021.02.014. 11. Nosenko V.A., Nosenko S.V. Mathematical models of operating time and cutting capacity for various stages of flat creep feed grinding of horizontal surface by circle of direct profile. Journal of Machinery Manufacture and Reliability , 2010, vol. 39, pp. 380–385. DOI: 10.3103/S1052618810040138. 12. Skeeba V.Yu., Ivancivskiy V.V., Zub N.P., Turevich S.V. Integral’naya obrabotka kak effektivnoe napravlenie resheniya zadachi perekhoda k resursosberegayushchim tekhnologiyam [Integrated processing as an effective direction of the decision problems of transition to alternative technologies]. Innovatsionnaya deyatel’nost’ = Innovative Activities , 2010, no. 10-1, pp. 66–69. 13. Li H.N., Axinte D. On the inverse design of discontinuous abrasive surface to lower friction-induced temperature in grinding: an example of engineered abrasive tools. International Journal of Machine Tools and Manufacture , 2018, vol. 132, pp. 50–63. DOI: 10.1016/j.ijmachtools.2018.04.006. 14. Zhang F.-L., Huang G.-W., Liu J.-M., Du Z.-J., Wu S.-X., Wang C.-Y. Grinding performance and wear of metal bond super-abrasive tools in grinding of Zr-based bulk metallic glass. International Journal of Refractory Metals and Hard Materials , 2021, vol. 97, p. 105501. DOI: 10.1016/j.ijrmhm.2021.105501. 15. Ivancivsky V.V., Skeeba V.Yu., Pushnin V.N. Metodika naznacheniya rezhimov obrabotki pri sovmeshchenii operatsii abrazivnogo shlifovaniya i poverkhnostnoi zakalki TVCh [Methods of appointment processing conditions

RkJQdWJsaXNoZXIy MTk0ODM1