Influence of hydrogen saturation on the structure and mechanical properties of Fe-17Cr-13Ni-3Mo-0.01С austenitic steel during rolling at different temperatures

OBRABOTKAMETALLOV Vol. 23 No. 2 2021 97 MATERIAL SCIENCE 19. Schramm R., Reed R. Stacking fault energies of seven commercial austenitic stainless steels. Metallurgical Transactions A , 1975, vol. 6, pp. 1345–1351. DOI: 10.1007/bf02641927. 20. Rhodes C., Thompson A. The composition dependence of stacking fault energy in austenitic stainless steels. Metallurgical Transactions A , 1977, vol. 8, pp. 1901–1906. DOI: 10.1007/BF02646563. 21. Piatti G., Schiller P. Thermal and mechanical properties of the Cr-Mn-(Ni-free) austenitic steels for fusion reactor applications. Journal of Nuclear Materials , 1986, vol. 141–143, pp. 417–426. DOI: 10.1016/S0022- 3115(86)80076-9. 22. Qi-Xun D., Xiao-NongW., ChengA.-D., Xin-Min L., Xin-Min L. Stacking fault energy of cryogenic austenitic steels. Chinese Physics , 2002, vol. 11, no. 6, pp. 596–600. DOI: 10.1088/1009-1963/11/6/315. 23. Koyama M., Akiyama E., Sawaguchi T., Ogawa K., Kireeva I.V., Chumlyakov Yu.I., Tsuzaki K. Hydrogen- assisted quasi-cleavage fracture in a single crystalline type 316 austenitic stainless steel. Corrosion Science , 2013, vol. 75, pp. 345–353. DOI: 10.1016/j.corsci.2013.06.018. 24. Melnikov E., Maier G., Moskvina V., Astafurova E. Structure, phase composition and mechanical properties of austenitic steel Fe–18Cr–9Ni–0.5Ti–0.08C subjected to chemical deformation processing. AIP Conference Proceedings , 2016, vol. 1783, pp. 020151-1 – 020151-4. DOI: 10.1063/1.4966444. 25. Melnikov E., Maier G., Moskvina V., Astafurova E. In fl uence of hydrogenation regime on structure, phase composition and mechanical properties of Fe18Cr9Ni0.5Ti0.08C steel in cold rolling . AIP Conference Proceedings , 2017, vol. 1909, pp. 020136-1 – 020136-4. DOI: 10.1063/1.5013817. 26. Kreslin V.Y., Naiden E.P. Automatic complex for a study of the characteristics of hard magnetic materials. Instruments and Experimental Techniques , 2002, vol. 45, pp. 55–57. DOI: 10.1023/A:1014548225622. Translated from Pribory i tekhnika eksperimenta , 2002, no. 1, pp. 83–86. 27. Utevskii L.M. Difraktsionnaya elektronnaya mikroskopiya v metallovedenii [Diffraction electron microscopy in metal science]. Moscow, Metallurgiya Publ., 1973. 584 p. 28. Christian J.W., Mahajan S. Deformation twinning. Progress in Materials Science , 1995, vol. 39, no. 1–2, pp. 1–157. DOI: 10.1016/0079-6425(94)00007-7. 29. Sathiyamoorthi P., Asghari-Rad P., Karthik G.M., Zargaran A., Kim H.S. Unusual strain-induced martensite and absence of conventional grain re fi nement in twinning induced plasticity high-entropy alloy processed by high- pressure torsion. Materials Science and Engineering: A , 2021, vol. 803, p. 140570. DOI: 10.1016/j.msea.2020.140570. 30. Astafurova E.G., Tukeeva M.S., Maier G.G., Melnikov E.V., Maier H.J. Microstructure and mechanical response of single-crystalline high-manganese austenitic steels under high-pressure torsion: The effect of stacking- fault energy. Materials Science and Engineering:A , 2014, vol. 604, pp. 166–175. DOI: 10.1016/j.msea.2014.03.029. 31. Kireeva I.V., Chumlyakov Yu.I., Luzginova N.V. Skol’zhenie i dvoinikovanie v monokristallakh austenitnykh nerzhaveyushchikh stalei s azotom [Slip and twinning in single crystals of austenitic stainless steels with nitrogen]. Fizika metallov i metallovedenie = The Physics of Metals and Metallography , 2002, vol. 94, no. 5, pp. 92–104. (In Russian). 32. Litvinova E.I., Kireeva I.V., Zakharova E.G., Luzginova N.V., Chumlyakov Yu.I., Sekhitoglu Kh., Karaman I. Dvoinikovanie v monokristallakh stali Gad fi l’da [Twinning of Had fi eld steel single crystals]. Fizicheskaya mezomekhanika = Physical mesomechanics , 1999, vol. 7 (1–2), pp. 115–121. 33. Shul’minaA.A., LuzginovaN.V., Kireeva I.V., ChumlyakovYu.I., Ul’yanychevaV.F.Mekhanizmy deformatsii monokristallov austenitnykh nerzhaveyushchikh stalei, legirovannykh azotom [Deformationmechanisms of austenitic stainless steel single crystals alloyed with nitrogen]. Fizicheskaya mezomekhanika = Physical mesomechanics , 2004, vol. 7, spec. iss., pt. 1, pp. 253–265. 34. Astafurova E.G., Zakharova G.G., Maier H.J. Hydrogen-induced twinning in ‹001› Had fi eld steel single crystals. Scripta Materialia , 2010, vol. 63, iss. 12, pp. 1189–1192. DOI: 10.1016/j.scriptamat.2010.08.029. 35. Astafurova E.G., Maier G.G., Melnikov E.V., Moskvina V., Vojtsik V., Zakharov G., Smirnov A., Bataev V. Effect of hydrogen charging on mechanical twinning, strain hardening, and fracture of ‹111› and ‹144› had fi eld steel single crystals. Physical Mesomechanics , 2018, vol. 21, pp. 263–273. DOI: 10.1134/S1029959918030116. 36. Kozlov E.V., Glezer A.M., Koneva N.A., Popova N.A., Kurzina I.A. Osnovy plasticheskoi deformatsii nanostrukturnykh materialov [Fundamentals of plastic deformation of nanostructured materials]. Moscow, Fizmatlit Publ., 2016. 304 p. ISBN 978-5-9221-1689-3. Con fl icts of Interest The authors declare no con fl ict of interest.  2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1