Influence of hydrogen saturation on the structure and mechanical properties of Fe-17Cr-13Ni-3Mo-0.01С austenitic steel during rolling at different temperatures

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 23 No. 2 2021 8. Padilha A.F., Plaut R.L., Rios P.R. Annealing of cold-worked austenitic stainless steels. ISIJ International , 2003, vol. 43, no. 2, pp. 135–143. DOI: 10.2355/isijinternational.43.135. 9. Ghosh S.K., Mallick P., Chattopadhyay P.P. Effect of cold deformation on phase evolution and mechanical properties in an austenitic stainless steel for structural and safety applications. Journal of Iron and Steel Research International , 2012, vol. 19, no. 4, pp. 63–68. DOI: 10.1016/s1006–706x(12)60089-2. 10. Ren-bo S., Jian-ying X., Dong-po H. Characteristics of mechanical properties and microstructure for 316l austenitic stainless steel. Journal of Iron and Steel Research International , 2011, vol. 18, no. 11, pp. 53–59. DOI: 10.1016/S1006-706X(11)60117-9. 11. Litovchenko I.Yu., Shevchenko N.V., TyumentsevA.N., Naiden E.P. Fazovyi sostav i defektnaya substruktura austenitnoi stali 02X17T14M2posledeformatsii prokatkoi pri komnatnoi temperature [Phasecompositionanddefective substructure of austenitic steel 02Cr17Ni14Mo2 after room temperature rolling]. Fizicheskaya mezomekhanika = Physical mesomechanics , 2006, vol. 9, spec. iss. 1, pp. 137–140. DOI: 10.24411/1683-805X-2006-00050. 12. Litovchenko I.Yu., Tyumentsev A.N., Naiden E.P. Osobennosti martensitnykh prevrashchenii i evolyutsiya defektnoi mikrostruktury v protsesse prokatki metastabil’noi austenitnoi stali pri komnatnoi temperature [Peculiarities of martensite transformations and evolution of defect microstructure in metastable austenitic steel rolled at room temperature]. Fizicheskaya mezomekhanika = Physical mesomechanics , 2014, vol. 17, no. 1, pp. 31– 42. DOI: 10.24411/1683-805X-2014-00045. 13. Hadji M., Badji R. Microstructure and mechanical properties of austenitic stainless steels after cold rolling. Journal of Materials Engineering and Performance , 2002, vol. 11, pp. 145–151. DOI: 10.1361/105994902770344204. 14. Eliezer D., Chakrapani D.G., Altstetter C.J., Pugh E.N. The influence of austenite stability on the hydrogen embrittlement and stress-corrosion cracking of stainless steel. Metallurgical Transactions A , 1979, vol. 10, pp. 935– 941. DOI: 10.1007/BF02658313. 15. Singh S.,Altstetter C. Effects of hydrogen concentration on slow crack growth in stainless steels. Metallurgical Transactions A , 1982, vol. 13, pp. 1799–1808. DOI: 10.1007/BF02647836. 16. Rozenak P., Bergman R. X-ray phase analysis of martensitic transformations in austenitic stainless steels electrochemically charged with hydrogen. Materials Science and Engineering A , 2006, vol. 437, pp. 366–378. DOI: 10.1016/j.msea.2006.07.140. 17. Yang Q., Luo J.L. Martensite transformation and surface cracking of hydrogen charged and outgassed type 304 stainless steel. Materials Science and Engineering: A , 2000, vol. 288, iss. 1, pp. 75–83. DOI: 10.1016/S0921- 5093(00)00833-9. 18. Hoelzel M., Danilkin S.A., Ehrenberg H., Toebbens D.M., Udovic T.J., Fuessa H., Wipf H. Effects of high- pressure hydrogen charging on the structure of austenitic stainless steels. Materials Science and Engineering: A , 2004, vol. 384, iss. 1–2, pp. 255–261. DOI: 10.1016/j.msea.2004.06.017. 19. Schramm R., Reed R. Stacking fault energies of seven commercial austenitic stainless steels. Metallurgical Transactions A , 1975, vol. 6, pp. 1345–1351. DOI: 10.1007/bf02641927. 20. Rhodes C., Thompson A. The composition dependence of stacking fault energy in austenitic stainless steels. Metallurgical Transactions A , 1977, vol. 8, pp. 1901–1906. DOI: 10.1007/BF02646563. 21. Piatti G., Schiller P. Thermal and mechanical properties of the Cr-Mn-(Ni-free) austenitic steels for fusion reactor applications. Journal of Nuclear Materials , 1986, vol. 141–143, pp. 417–426. DOI: 10.1016/S0022- 3115(86)80076-9. 22. Qi-Xun D., Xiao-NongW., ChengA.-D., Xin-Min L., Xin-Min L. Stacking fault energy of cryogenic austenitic steels. Chinese Physics , 2002, vol. 11, no. 6, pp. 596–600. DOI: 10.1088/1009-1963/11/6/315. 23. Koyama M., Akiyama E., Sawaguchi T., Ogawa K., Kireeva I.V., Chumlyakov Yu.I., Tsuzaki K. Hydrogen- assisted quasi-cleavage fracture in a single crystalline type 316 austenitic stainless steel. Corrosion Science , 2013, vol. 75, pp. 345–353. DOI: 10.1016/j.corsci.2013.06.018. 24. Melnikov E., Maier G., Moskvina V., Astafurova E. Structure, phase composition and mechanical properties of austenitic steel Fe–18Cr–9Ni–0.5Ti–0.08C subjected to chemical deformation processing. AIP Conference Proceedings , 2016, vol. 1783, pp. 020151-1 – 020151-4. DOI: 10.1063/1.4966444. 25. Melnikov E., Maier G., Moskvina V., Astafurova E. Influence of hydrogenation regime on structure, phase composition and mechanical properties of Fe18Cr9Ni0.5Ti0.08C steel in cold rolling . AIP Conference Proceedings , 2017, vol. 1909, pp. 020136-1 – 020136-4. DOI: 10.1063/1.5013817. 26. Kreslin V.Y., Naiden E.P. Automatic complex for a study of the characteristics of hard magnetic materials. Instruments and Experimental Techniques , 2002, vol. 45, pp. 55–57. DOI: 10.1023/A:1014548225622. Translated from Pribory i tekhnika eksperimenta , 2002, no. 1, pp. 83–86.

RkJQdWJsaXNoZXIy MTk0ODM1