Review of alloys developed using the entropy approach
OBRABOTKAMETALLOV Vol. 23 No. 2 2021 140 MATERIAL SCIENCE Ceramic , 2014, vol. 52, pp. 560–566. DOI: 10.1007/s11106-014-9560-z. Translated from Poroshkovaya metallur- giya , 2013, no. 9–10, pp. 93–102. 25. Oates W.A. Con fi gurational entropies of mixing in solid alloys. Journal of Phase Equilibria and Diffusion , 2007, vol. 28, pp. 79–89. DOI: 10.1007/s11669-006-9008-3. 26. Tro fi menko N.N., E fi mochkin I.Yu., Bol’shakova A.N. Problemy sozdaniya i perspektivy ispol’zovaniya zharoprochnykh vysokoentropiinykh splavov [Problems of creation and prospects for the use of heat-resistant high- entropy alloys]. Aviatsionnye materialy i tekhnologii = Aviation Materials and Technologies , 2018, no. 5, pp. 3–8. 27. Gorban’V.F., Krapivka N.A., Firstov S.A. Vysokoentropiinye splavy – elektronnaya kontsentratsiya – fazovyi sostav – parametr reshetki – svoistva svoistva [High-entropy alloys: Interrelations between electron concentration, phase composition, lattice parameter, and properties]. Fizika metallov i metallovedenie = Physics of Metals and Met- allography , 2017, vol. 118, no. 10, pp. 1017–1029. DOI: 10.7868/S0015323017080058. (In Russian). 28. Manzoni A., Daoud H., Volkl R., Glatzel U., Wanderka N. Phase separation in equiatomic AlCoCrFeNi high- entropy alloy. Ultramicroscopy , 2013, vol. 163, pp. 184–189. DOI: 10.1016/j.ultramic.2012.12.015. 29. Otto F., Yang Y., Bei H., George E.P. Relative effects of enthalpy and entropy on the phase stability of equi- atomic high-entropy alloys. Acta Materialia , 2013, vol. 61 (7), pp. 2628–2638. DOI: 10.1016/j.actamat.2013.01.042. 30. Tong C.-J., Chen Y.-L., Yeh J.-W., Lin S.-J., Chen S.-K., Shun T.-T., Tsau C.-H., Chang S.-Y. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Ma- terials Transactions: A , 2005, vol. 36, pp. 881–893. DOI: 10.1007/s11661-005-0283-0. 31. Ivchenko M.I., Pushin V.G., Uksusnikov A.N., Wanderka N. Osobennosti mikrostruktury litykh vysokoen- tropiinykh splavov AlCrFeCoNiCu [Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu al- loys]. Fizika metallov i metallovedenie = Physics of Metals and Metallography , 2013, vol. 114, no. 6, pp. 561–568. DOI: 10.7868/S0015323013060065. (In Russian). 32. Takeuchi A., Chen N., Wada T., Yokoyama Y., Kato H., Inoue A., Yeh J.W. Pd 20 Pt 20 Cu 20 Ni 20 P 20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics , 2011, vol. 19 (10), pp. 1546–1554. DOI: 10.1016/j. intermet.2011.05.030. 33. Shun T.-T., Chang L.-Y., Shiu M.-H. Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Materials Characterization , 2012. vol. 70, pp. 63–67. DOI: 10.1016/j.matchar.2012.05.005. 34. Cantor B. Stable and metastable multicomponent alloys. Annales de Chimie Science des Matériaux , 2007, vol. 32 (3), pp. 245–256. DOI: 10.3166/acsm.32.245-256. 35. Tsai M.-H., Yeh J.-W. High-entropy alloys: a critical review. Materials Research Letters , 2014, vol. 2 (3), pp. 107–123. DOI: 10.1080/21663831.2014.912690. 36. Ivchenko M.V., Pushin V.G., Vanderka N. Vysokoentropiinye ekviatomnye splavy AlCrFeCoNiCu: gipotezy i eksperimental’nye fakty [High-entropy equiatomic AlCrFeCoNiCu alloy: hypotheses and experimental data]. Zhurnal tekhnicheskoi fi ziki = Technical Physics. The Russian Journal of Applied Physics , 2014, vol. 84, no. 2, pp. 57–69. (In Russian). 37. TungC.C.,Yeh J.W., ShunT.T., Chen S.-K., HuangY.-S., ChenH.-C. On the elemental effect ofAlCoCrCuFeNi high-entropy alloy system. Materials Letters , 2007, vol. 61 (1), pp. 1–5. DOI: 10.1016/j.matlet.2006.03.140. 38. Wen L.H., Kou H.C., Li J.S., Chang H., Hue X.Y., Zhou L. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics , 2009, vol. 17 (4), pp. 266–269. DOI: 10.1016/j. intermet.2008.08.012. 39. Tong C.-J., Chen M.-R., Yeh J.-W., Lin S.-J., Chen S.-K., Shun T.-T., Chang S.-Y. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions: A , 2005, vol. 36 (5), pp. 1263–1271. DOI: 10.1007/s11661-005-0218-9. 40. Braic V., VladescuA., BalaceanuM., Luculescu C.R., Braic M. Nanostructured multi-element (TiZrNbHfTa)C hard coatings. Surface and Coatings Technology , 2012, vol. 211, pp. 117–121. DOI: 10.1016/j.surfcoat.2011.09.033. 41. Lin M.I., Tsai M.H., Shen W.H., Yeh J.W. Evolution of structure and properties of multi-component (AlCrTaTiZr)O x fi lms. Thin Solid Films , 2010, vol. 518, pp. 2732–2737. DOI: 10.1016/j.tsf.2009.10.142. 42. Gu J., Zou J., Sun S.-K., Wang H., Yu S.-Y., Zhang J., Wang W., Fu Z. Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach. Science China Materials , 2019, vol. 62 (12). – P. 1898–1909. DOI: 10.1007/s40843-019-9469-4. 43. Chang S.Y., Lin S.Y., Huang Y.C., Wu S.L. Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)N x multi-component coatings. Surface and Coatings Technology , 2010, vol. 204 (20), pp. 3307–3314. DOI: 10.1016/j.surfcoat.2010.03.041. 44. Vinnik D.A., Tro fi mov E.A., Zhivulin V.E., Zaitseva O.V., Starikov A.Yu., Zhil’tsova T.A., Savina Yu.D., Gudkova S.A., Zherebtsov D.A., Popova D.A. Tverdofaznyi sintez vysokoentropiinykh kristallov so strukturoi
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1