Review of alloys developed using the entropy approach

OBRABOTKAMETALLOV Vol. 23 No. 2 2021 141 MATERIAL SCIENCE magnetoplyumbita v sisteme BaO–Fe 2 O 3 –TiO 2 –Al 2 O 3 –In 2 O 3 –Ga 2 O 3 –Cr 2 O 3 [Solid-phase synthesis of high-entropy crystals with the magnetoplumbite structure in the BaO–Fe 2 O 3 –TiO 2 –Al 2 O 3 –In 2 O 3 –Ga 2 O 3 –Cr 2 O 3 system]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Khimiya = Bulletin of the South Ural State University. Series: Chemistry , 2019, vol. 11, no. 3, pp. 32–39. DOI: 10.14529/chem190304. 45. Jiang S., Hu T., Gild J., Zhou N., Nie J., Qin M., Harrington T., Vecchio K., Luo J.A. New class of high- entropy perovskite oxides. Scripta Materialia , 2018, vol. 142, pp. 116–120. DOI: 10.1016/scriptamat. 2017.08.040. 46. Dabrova J., Stygar M., Mikula A., Knapik A., Danielewski M., Mroczka K., Tejchman W., Martin M. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni) 3 0 4 high entropy oxide characterized by spinel structure. Materials Letters , 2018, vol. 216, pp. 32–36. DOI: 10.1016/j.matlet.2017.12.148. 47. Velo I.L., Gotor F.J., Alcala M.D., Real C., Cordoba J.M. Fabrication and characterization of WC-HEA cemented carbide based on the CoCrFeNiMn high entropy alloy. Journal of Alloys and Compounds , 2018, vol. 746, pp. 1–8. DOI: 10.1016/j.jallcom.2018.02.292. 48. De la Obra A.G., Sayagues M.J., Chicardi E., Gotor F.J. Development of Ti(C, N)-based cermets with (Co, Fe, Ni)-based high entropy alloys as binder phase. Journal of Alloys and Compounds , 2020, vol. 814, art. 152218. DOI: 10.1016/j.jallcom.2019.152218. 49. Li Z., Liu X., Guo K., Wang H., Cai B., Chang F., Hong C., Dai P. Microstructure and properties of Ti(C, N)- TiB 2 -FeCoCrNiAl high-entropy alloys composite cermets. Materials Science and Engineering: A , 2019, vol. 767, art. 138427. DOI: 10.1016/j.msea.2019.138427. 50. Schuh B., Mende ȥ -Martin F., Völker B., George E.P., Clemens H., Pippan R., Hohenwarter A. Mechanical properties, microstructure and thermal stability of a nanocristalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Materialia , 2015, vol. 96, pp. 258–268. DOI: 10.1016/j.actamat.2015.06.025. 51. Nadutov V.M., Makarenko S.Yu., Volosevich P.Yu. Vliyanie alyuminiya na tonkuyu strukturu i raspredelenie khimicheskikh elementov v vysokoentropiinykh splavakh AlxFeNiCoCuCr [Effect of aluminum on fi ne structure and distribution of chemical elements in high-entropy alloys Al x FeNiCoCuCr]. Fizika metallov i metallovedenie = Physics of Metals and Metallography , 2015, vol. 116, no. 5, pp. 467–472. DOI: 10.7868/S0015323015030092. (In Russian). 52. Zhang L.J., Guo K., Tang H., Zhang M.D., Fan J.T., Cui P., Ma Y.M., Yu P.F., Li G. The microstructure and mechanical properties of novel Al-Cr-Fe-Mn-Ni high-entropy alloys with trimodal distributions of coherent B2 precipitates. Materials Science and Engineering: A , 2019, vol. 757, pp. 160–171. DOI: 10.1016/j.msea.2019.04.104. 53. Krapivka N.A., Firstov S.A., Karpets M.V., Myslivchenko A.N., Gorban’V.F. Osobennosti fazoobrazovaniya i formirovaniya struktury v vysokoentropiinykh splavakh sistemyAlCrFeCoNiCu x (x = 0; 0.5; 1.0; 2.0; 3.0) [Features of phase and structure formation in high-entropy alloys of theAlCrFeCoNiCu x system (x= 0, 0.5, 1.0, 2.0, 3.0)]. Fizika metallov i metallovedenie = Physics of Metals and Metallography , 2015, vol. 116, no. 5, pp. 496–504. DOI: 10.7868/ S0015323015030080. (In Russian). 54. Gu J., Ni S., Liu Y., Song M. Regulating the strength and ductility of a cold rolled FeCrCoMnNi high-entropy alloy via annealing treatment. Materials Science and Engineering: A , 2019, vol. 755, pp. 289–294. DOI: 10.1016/j. msea.2019.04.025. 55. Senkov O.N., Scott J.M., Senkova S.V., Meisenkothen F., Miracle D.B., Woodward C.F. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. Journal of Materials Science , 2012, vol. 47, pp. 4062–4074. DOI: 10.1007/s10853-012-6260-2. 56. Tang W.-Y., Yeh J.-W. Effect of aluminum content on plasma-nitrided AlxCoCrCuFeNi high-entropy alloys. Metallurgical and Materials Transactions: A , 2009, vol. 40, pp. 1479–1486. DOI: 10.1007/s11661-009-9821-5. 57. Gali A., George E.P. Tensile properties of high- and medium-entropy alloys. Intermetallics , 2013, vol. 39, pp. 74–78. DOI: 10.1016/j.intermet.2013.03.018. 58. Otto F., Dlouhy A., Somsen Ch., Bei H., Eggeler G., George E.P. The in fl uence of temperature and microstructure on tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Metallurgica , 2013, vol. 61, pp. 5743– 5755. DOI: 10.1016/j.actamat.2013.06.018. 59. Ma X., Chen J., Wang X., Hu Y., Hue Y. Microstructure and mechanical properties of cold drawing CoCrFeMnNi high entropy alloy. Journal of Alloys and Compounds , 2019, vol. 795, pp. 45–53. DOI: 10.1016/j. jallcom.2019.04.296. 60. Shaisultanov D.G., Stepanov N.D., Salishchev G.A., Tikhonovskii M.A. Vliyanie termicheskoi obrabotki na strukturu i tverdost’ vysokoentropiinykh splavov CoCrFeNiMnV x (x = 0.25, 0.5, 0.75, 1) [Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnV x (x = 0.25, 0.5, 0.75, 1)]. Fizika metallov i metallovedenie = Physics of Metals and Metallography , 2017, vol. 118, no. 6, pp. 610–621. DOI: 10.7868/ S0015323017060080. (In Russian).

RkJQdWJsaXNoZXIy MTk0ODM1