Review of alloys developed using the entropy approach
OBRABOTKAMETALLOV Vol. 23 No. 2 2021 143 MATERIAL SCIENCE 79. Firstov S.A., Karpov M.I., Gorban’ V.F., Korzhov V.P., Krapivka N.A., Stroganova T.S. Struktura i mekhanicheskie svoistva zharoprochnogo kompozita na osnove vysokoentropiinogo splava [The structure and mechanical properties of heat resistant composite material based of high entropy alloys]. Zavodskaya laboratoriya. Diagnostika materialov = Industrial laboratory. Materials diagnostics , 2015, vol. 81, no. 6, pp. 28–33. (In Russian). 80. Firstov S.A., Karpov M.I., Korzhov V.P., Gorban’ V.F., Krapivka N.A., Stroganova T.S. Struktura i svoistva sloistogo kompozita iz vysokoentropiinogo splava s karbidnym i intermetallidnym uprochneniem [Structure and properties of a laminated composite material made of high-entropy alloy with carbide and intermetallic hardening]. Izvestiya Rossiiskoi akademii nauk. Seriya fi zicheskaya = Bulletin of the Russian Academy of Sciences: Physics , 2015, vol. 79, no. 9, pp. 1267–1275. DOI: 10.7868/S0367676515090057. (In Russian). 81. Gasan H., O ȥ can A. New eutectic high-entropy alloys based on Co-Cr-Fe-Mo-Ni-Al: design, characterization and mechanical properties. Metals and Materials International , 2020, vol. 26, pp. 1152–1167. DOI: 10.1007/s12540- 019-00515-9. 82. Shaisultanov D.G. Struktura i mekhanicheskie svoistva vysokoentropiinykh splavov sistemy CoCrFeNiX (X=Mn, V, Mn i V, Al i Cu). Diss. kand. tekhn. nauk [Structure and mechanical properties of high-entropy alloys of CoCrFeNiX system (X = Mn, V, Mn and V, Al and Cu). PhD eng. sci. diss.]. Belgorod, 2015. 142 p. 83. Lucas M.S., Wilks G.B., Mauger L., Munoz J.A., Senkov O.N., Michel E., Horwath J., Semiatin S.L., Stone M.B., Abernathy D.L., Karapetrova E. Absence of long-range chemical ordering in equimolar FeCoCrNi. Applied Physics Letters , 2012, vol. 100 (25), art. 251907. DOI: 10.1063/1.4730327. 84. Owen L.R., Pickering E.J., Playford H.Y., Stone H.J., Tucker M.G., Jones N.G. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy. Acta Materialia , 2017, vol. 122, pp. 11–18. DOI: 10.1016/j. actamat.2016.09.032. 85. Bhattacharjee P.P., Sathiaraj G.D., ZaidM., Gatti J.R., Lee C., Tsai C.-W., Yeh J.-W. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. Journal of Alloys and Compounds , 2014, vol. 587, pp. 544–552. DOI: 10.1016/j.jallcom.2013.10.237. 86. Gludowat ȥ B., George E.P., Rithie R.O. Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy. JOM , 2015, vol. 67 (10), pp. 2262–2270. DOI: 10.1007/s11837-015-1589-z. 87. He J.Y., Zhu C., Zhou D.Q., Liu W.H., Nieh T.G., Li Z.P. Steady state fl ow of the FeCoNiCrMn high entropy alloy at elevated temperatures. Intermetallics , 2014, vol. 55, pp. 9–14. DOI: 10.1016/j.intermet.2014.06.015. 88. Otto F., Dlouhý A., Pradeep K.G., Kub ě nova M., Raabec D., Eggeler G., Georgea E.P. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Materialia , 2016, vol. 112, pp. 40–52. DOI: 10.1016/j.actamat.2016.04.005. 89. Cieslac J., Tobola J., Pr ȥ ewo ȥ nik J., Berent K., Dahlborg U., Cornide J., Mehraban S., Lavery N., Calvo- Dahlborg M. Multi-phase nature of sintered vs. arc-melted CrxAlFeCoNi high entropy alloys – experimental and theoretical study. Journal of Alloys andCompounds , 2019, vol. 801, pp. 511–519. DOI: 10.1016/j.jallcom.2019.06.121. 90. TangY.,WangR., Li S., LiuX.,YeY., ZhuL., Bai S., XiaoB. Effect ofmetastabilityonnon-phase-transformation high-entropy alloys. Materials and Design , 2019, vol. 181, art. 107928. DOI: 10.1016/j.matdes.2019.107928. 91. Wang R., Tang Y., Li S., Zhang H., Ye Y., Zhu L., Ai Y., Bai S. Novel metastable engineering in single-phase high-entropy alloy. Materials and Design , 2019, vol. 162, pp. 256–262. DOI: 10.1016/j.matdes.2018.11.052. 92. Pacheco V., Lindwall G., Karlsson D., Cedervall J., Frit ȥ e S., Ek G., Berastegui P., Sahlberg M., Jansson U. Thermal stability of the HfNbTiVZr high-entropy alloy. Inorganic Chemistry , 2019, vol. 58, pp. 811–820. DOI: 10.1021/acs.inorgchem.8b02957. 93. Poulia A., Georgatis E., Mathiou C., Karant ȥ alis A.E. Phase segregation discussion in a Hf 25 Zr 30 Ti 20 Nb 15 V 10 high entropy alloy: the effect of the high melting point element. Materials Chemistry and Physics , 2018, vol. 210, pp. 251–258. DOI: 10.1016/j.matchemphys.2017.09.059. 94. Shim S.H., Oh S.M., Lee J., Hong S.-K., Hong S.I. Nanoscale modulated structures by balanced distribution of atoms and mechanical/structural stabilities in CoCuFeMnNi high entropy alloys. Materials Science and Engineering: A , 2019, vol. 762, art. 138120. DOI: 10.1016/j.msea.2019.138120. 95. Yurchenko N.Yu., Stepanov N.D., Grigneva A.O., Michunin M.V., Salishchev G.A., Zherebtsov S.V. Effect of Cr and Zr on phase stability of refractory Al-Cr-Nb-Ti-V-Zr high-entropy alloys. Journal of Alloys and Compounds , 2018, vol. 757, pp. 403–414. DOI: 10.1016/j.jallcom.2018.05.099. 96. Shahmir H., Nili-Ahmadabadi M., Sha fi ee A., Andr ȥ ejc ȥ uk M., Lewandowska M., Langdon T.G. Effect of Ti on phase stability and strengthening mechanisms of a nanocrystalline CoCrFeMnNi high-entropy alloy. Materials Science and Engineering: A , 2018, vol. 725, pp. 196–206. DOI: 10.1016/j.msea.2018.04.014. 97. Meng Y.H., Duan F.H., Pan J., Li Y. Phase stability of B2-ordered ZrTiHfCuNiFe high entropy alloy. Intermetallics , 2019, vol. 111, art. 106515. DOI: 10.1016/j.intermet.2019.106515.
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1