Review of alloys developed using the entropy approach

OBRABOTKAMETALLOV Vol. 23 No. 2 2021 146 MATERIAL SCIENCE entropy alloy Nb-Mo-Cr-Ti-Al. Journal of Alloys and Compounds , 2016, vol. 661, pp. 206–215. DOI: 10.1016/j. jallcom.2015.11.050. 135. Zhang Y., Liu Y., Li Y., Chen X., Zhang H. Microstructure and mechanical properties of a refractory HFNbTiVSi0.5 high-entropy alloy composite. Materials Letters , 2016, vol. 174, pp. 82–85. DOI: 10.1016/j. matlet.2016.03.092. 136. Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fracture-resistanz high-entropy alloy for cryogenic applications. Science , 2014, vol. 345 (6201), pp. 1153–1158. DOI: 10.1126/ science.1254581. 137. Vinnik D., Zhivulin V., Tro fi mov E., Starikov A., Zherebtsov D., Zaitseva O., Gudkova S., Taskaev S., Klygach D., Vakhitov M., Sander E., Sherstyuk D., Trukhanov A. Extremely polysubstituted magnetic material based on magnetoplumbite with a hexagonal structure: synthesis, structure, properties, prospects. Nanomaterials (Basel) , 2019, vol. 9 (4). DOI: 10.3390/nano9040559. 138. Vinnik D.A., Tro fi mov E.A., Zhivulin V.E., Zaitseva O.V., Zhil’tsova T.A., Repin D.V. Obrazovanie vysokoentropiinykh oktaedricheskikh kristallov v mnogokomponentnykh oksidnykh sistemakh [Formation of high-entropy octahedral crystals in multicomponent oxide systems]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Khimiya = Bulletin of the South Ural state university. Series: Chemistry , 2019, vol. 11, no. 3, pp. 24–31. DOI: 10/14529/chem190303. 139. Pullar R.C. Hexagonal ferrites: a reviev of the synthesis, properties and applications of hexaferrite ceramics. Progress in Materials Science , 2012, vol. 57 (7), pp. 1191–1334. DOI: 10.1016/pmatsci.2012.04001. 140. Vinnik D., Ustinova I.A., Ustinov A.B., Gudkova S.A., Zherebtsov D.A., Tro fi mov E.A., Zabeivorota N.S., Mikhailov G.G., Nieva R. Millimeter-wave characterization of aluminum substituted barium lead hexaferrite single crystals grown from PbO-B2O3 fl ux. Ceramics International , 2017, vol. 17, pp. 15800–15804. DOI: 10.1016/j. ceramint.2017.08.145. 141. Kourov N.I., Pushin V.G., Korolev A.V., Knyazev Yu.V., Kuranova N.N., Ivchenko M.V., Ustyugov Yu.M., Vanderka N. Struktura i fi zicheskie svoistva bystrozakalennogo iz rasplava vysokoentropiinogo splavaAlCrFeCoNiCu [Structure and physical properties of the high-entropy AlCrFeCoNiCu alloy rapidly quenched from the melt]. Fizika tverdogo tela = Physics of the Solid State , 2015, no. 57 (8) pp. 1579–1589. 142. Chikova O.A., Tsepelev V.S., V’yukhin V.V., Shmakova K.Yu. Kinematicheskaya vyazkost’ zhidkikh vysokoentropiinykh splavov Cu-Sn-In-Bi-Pb [Kinetic viscosity of molten high entropy alloys Cu–Sn–In–Bi–Pb]. Izvestiya vuzov. Tsvetnaya metallurgiya = Russian Journal of Non-Ferrous Metals , 2015, special issue, pp. 57–60. DOI: 10.17073/0021-3438-2015-0-57-60. (In Russian). 143. V’yukhin V.V., Chikova O.A., Tsepelev V.S. Poverkhnostnoe natyazhenie zhidkikh vysokoentropiinykh ekviatomnykh splavov sistemy Cu-Sn-In-Bi-Pb [Surface tension of liquid high-entropy equiatomic alloys of a Cu- Sn-In-Bi-Pb system]. Zhurnal fi zicheskoi khimii = Russian Journal of Physical Chemistry A , 2017, vol. 91, no. 4, pp. 582–585. DOI: 10.7868/S0044453717040343. (In Russian). 144. Chikova O.A., Shmakova K.Yu., Tsepelev V.S. Opredelenie temperatur fazovykh ravnovesii vysokoentropiinykh metallicheskikh splavov viskozimetricheskimmetodom [Determination of the phase equilibrium temperature of high-entropy alloys by the viscometric method]. Metally = Russian metallurgy (Metally) , 2016, no. 2, pp. 54–59. (In Russian). 145. Chikova O.A., Tsepelev V.S., V’yukhin V.V., Shmakova K.Yu. Proektirovanie tekhnologii polucheniya vysokoentropiinykh splavov (pripoev) sistemy Cu-Ga-Pb-Sn-Bi [Planning technology for preparing high-entropy alloys (solders) of the Cu–Ga–Pb–Sn–Bi system] . Metallurg = Metallurgist , 2015, no. 5, pp. 82–86. 146. Gorbachev I.I., Popov V.V., Kats-Dem’yanets A., Popov V. ml., Eshed E. Prognozirovanie fazovogo sostava vysokoentropiinykh splavov na osnove Cr-Nb-Ti-V-Zr s pomoshch’yu CALPHAD-metoda [Prediction of the phase composition of high-entropy а lloys based on Cr–Nb–Ti–V–Zr using the calphad method]. Fizika metallov i metallovedenie = Physics of Metals and Metallography , 2019, vol. 120, no. 4, pp. 408–416. DOI: 10.1134/ S0015323019040065. (In Russian). 147. Yurchenko N.Yu. Razrabotka i issledovanie vysokoentropiinykh splavov s vysokoi udel’noi prochnost’yu na osnove sistemy Al-Cr-Nb-Ti-V-Zr. Diss. kand. tekhn. nauk [Development and research of high-entropy alloys with high speci fi c strength based on Al-Cr-Nb-Ti-V-Zr system. PhD eng. sci. diss.]. Belgorod, 2019. 187 p. Con fl icts of Interest The authors declare no con fl ict of interest.  2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1