Review of alloys developed using the entropy approach

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 23 No. 2 2021 31. Ivchenko M.I., Pushin V.G., Uksusnikov A.N., Wanderka N. Osobennosti mikrostruktury litykh vysokoen- tropiinykh splavov AlCrFeCoNiCu [Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu al- loys]. Fizika metallov i metallovedenie = Physics of Metals and Metallography , 2013, vol. 114, no. 6, pp. 561–568. DOI: 10.7868/S0015323013060065. (In Russian). 32. Takeuchi A., Chen N., Wada T., Yokoyama Y., Kato H., Inoue A., Yeh J.W. Pd 20 Pt 20 Cu 20 Ni 20 P 20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics , 2011, vol. 19 (10), pp. 1546–1554. DOI: 10.1016/j. intermet.2011.05.030. 33. Shun T.-T., Chang L.-Y., Shiu M.-H. Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys. Materials Characterization , 2012. vol. 70, pp. 63–67. DOI: 10.1016/j.matchar.2012.05.005. 34. Cantor B. Stable and metastable multicomponent alloys. Annales de Chimie Science des Matériaux , 2007, vol. 32 (3), pp. 245–256. DOI: 10.3166/acsm.32.245-256. 35. Tsai M.-H., Yeh J.-W. High-entropy alloys: a critical review. Materials Research Letters , 2014, vol. 2 (3), pp. 107–123. DOI: 10.1080/21663831.2014.912690. 36. Ivchenko M.V., Pushin V.G., Vanderka N. Vysokoentropiinye ekviatomnye splavy AlCrFeCoNiCu: gipotezy i eksperimental’nye fakty [High-entropy equiatomic AlCrFeCoNiCu alloy: hypotheses and experimental data]. Zhurnal tekhnicheskoi fiziki = Technical Physics. The Russian Journal of Applied Physics , 2014, vol. 84, no. 2, pp. 57–69. (In Russian). 37. TungC.C.,Yeh J.W., ShunT.T., Chen S.-K., HuangY.-S., ChenH.-C. On the elemental effect ofAlCoCrCuFeNi high-entropy alloy system. Materials Letters , 2007, vol. 61 (1), pp. 1–5. DOI: 10.1016/j.matlet.2006.03.140. 38. Wen L.H., Kou H.C., Li J.S., Chang H., Hue X.Y., Zhou L. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics , 2009, vol. 17 (4), pp. 266–269. DOI: 10.1016/j. intermet.2008.08.012. 39. Tong C.-J., Chen M.-R., Yeh J.-W., Lin S.-J., Chen S.-K., Shun T.-T., Chang S.-Y. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions: A , 2005, vol. 36 (5), pp. 1263–1271. DOI: 10.1007/s11661-005-0218-9. 40. Braic V., VladescuA., BalaceanuM., Luculescu C.R., Braic M. Nanostructured multi-element (TiZrNbHfTa)C hard coatings. Surface and Coatings Technology , 2012, vol. 211, pp. 117–121. DOI: 10.1016/j.surfcoat.2011.09.033. 41. Lin M.I., Tsai M.H., Shen W.H., Yeh J.W. Evolution of structure and properties of multi-component (AlCrTaTiZr)O x films. Thin Solid Films , 2010, vol. 518, pp. 2732–2737. DOI: 10.1016/j.tsf.2009.10.142. 42. Gu J., Zou J., Sun S.-K., Wang H., Yu S.-Y., Zhang J., Wang W., Fu Z. Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach. Science China Materials , 2019, vol. 62 (12). – P. 1898–1909. DOI: 10.1007/s40843-019-9469-4. 43. Chang S.Y., Lin S.Y., Huang Y.C., Wu S.L. Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)N x multi-component coatings. Surface and Coatings Technology , 2010, vol. 204 (20), pp. 3307–3314. DOI: 10.1016/j.surfcoat.2010.03.041. 44. Vinnik D.A., Trofimov E.A., Zhivulin V.E., Zaitseva O.V., Starikov A.Yu., Zhil’tsova T.A., Savina Yu.D., Gudkova S.A., Zherebtsov D.A., Popova D.A. Tverdofaznyi sintez vysokoentropiinykh kristallov so strukturoi magnetoplyumbita v sisteme BaO–Fe 2 O 3 –TiO 2 –Al 2 O 3 –In 2 O 3 –Ga 2 O 3 –Cr 2 O 3 [Solid-phase synthesis of high-entropy crystals with the magnetoplumbite structure in the BaO–Fe 2 O 3 –TiO 2 –Al 2 O 3 –In 2 O 3 –Ga 2 O 3 –Cr 2 O 3 system]. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Khimiya = Bulletin of the South Ural State University. Series: Chemistry , 2019, vol. 11, no. 3, pp. 32–39. DOI: 10.14529/chem190304. 45. Jiang S., Hu T., Gild J., Zhou N., Nie J., Qin M., Harrington T., Vecchio K., Luo J.A. New class of high- entropy perovskite oxides. Scripta Materialia , 2018, vol. 142, pp. 116–120. DOI: 10.1016/scriptamat. 2017.08.040. 46. Dabrova J., Stygar M., Mikula A., Knapik A., Danielewski M., Mroczka K., Tejchman W., Martin M. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni) 3 0 4 high entropy oxide characterized by spinel structure. Materials Letters , 2018, vol. 216, pp. 32–36. DOI: 10.1016/j.matlet.2017.12.148. 47. Velo I.L., Gotor F.J., Alcala M.D., Real C., Cordoba J.M. Fabrication and characterization of WC-HEA cemented carbide based on the CoCrFeNiMn high entropy alloy. Journal of Alloys and Compounds , 2018, vol. 746, pp. 1–8. DOI: 10.1016/j.jallcom.2018.02.292. 48. De la Obra A.G., Sayagues M.J., Chicardi E., Gotor F.J. Development of Ti(C, N)-based cermets with (Co, Fe, Ni)-based high entropy alloys as binder phase. Journal of Alloys and Compounds , 2020, vol. 814, art. 152218. DOI: 10.1016/j.jallcom.2019.152218. 49. Li Z., Liu X., Guo K., Wang H., Cai B., Chang F., Hong C., Dai P. Microstructure and properties of Ti(C, N)- TiB 2 -FeCoCrNiAl high-entropy alloys composite cermets. Materials Science and Engineering: A , 2019, vol. 767, art. 138427. DOI: 10.1016/j.msea.2019.138427.

RkJQdWJsaXNoZXIy MTk0ODM1