Review of alloys developed using the entropy approach

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 23 No. 2 2021 Proceedings. Powder metallurgy аnd functional coatings , 2018, no. 2, pp. 35–42. DOI: 10.17073/1997-308X-2018- 2-35-42. 66. Prusa F., Senkova A., Kusera V., Capek J., Vojtech D. Properties of high-strength ultrafine-grained CoCrFeN - iMn high-entropy alloy prepared by short-term mechanical alloying and spark plasma sintering. Materials Science and Engineering: A , 2018, vol. 734, pp. 341–352. DOI: 10.1016/j.msea.2018.08.014. 67. Alcala M.D., Real C., Fombella I., Trigo I., Cordoba J.M. Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanically synthesized FeCoNiCrMn high entropy alloy. Journal of Alloys and Compounds , 2018, vol. 749, pp. 834–843. DOI: 10.1016/j.jallcom.2018.03.358. 68. Varalakshmi S., Rao G.A., Kamaraj M., Murty B.S. Hot consolidation and mechanical properties of nano- crystalline equiatimic AlFeTiCrZnCu high entropy alloy after mechanical alloying. Journal of Materials Science , 2010, vol. 45, pp. 5158–5163. DOI: 10.1007/s10853-010-4246-5. 69. Vadchenko S.G., Rogachev A.S., Kovalev D.Yu., Kovalev I.D., Mukhina N.I. TiZrNiCuAl and TiNbNiCuAl alloys by thermal explosion and high-energy ball milling. International Journal of Self-Propagating High-Tempera- ture Synthesis , 2019, vol. 28 (2), pp. 137–142. DOI: 10.3103/S1061386219020122. 70. Rogachev A.S., Mukas’yan A.S. Gorenie dlya sinteza materialov: vvedenie v strukturnuyu makrokinetiku [Combustion for the synthesis of materials: Introduction to structural macrokinetics]. Moscow, Fizmatlit Publ., 2012. 398 p. ISBN 978-5-9221-1441-7. 71. Sanin V.N., Yukhvid V.I., Ikornikov D.M., Andreev D.E., Sachkova N.V., Alymov M.I. SVS-metallurgi- ya litykh vysokoentropiinykh splavov na osnove perekhodnykh metallov [SHS metallurgy of high-entropy tran- sition metal alloys]. Doklady Akademii nauk = Doklady physical chemistry , 2016, vol. 470, no. 4, pp. 421–426. DOI: 10.7868/S0869565216280124. 72. Shen W.J., Tsai M.-H., Chang Y.-S., Yeh J.-W. Effects of substrate bias on the structure and mechanical properties of (Al 1.5 CrNb 0.5 Si 0.5 Ti)N x coatings. Thin Solid Films , 2012, vol. 520, pp. 6183–6188. DOI: 10.1016/j. tsf.2012.06.002. 73. Dolique V., Thomann A.L., Brault P. High-entropy alloys deposited by magnetron sputtering. IEEE Transactions on Plasma Science , 2011, vol. 39 (11), pp. 2478–2479. DOI: 10.1109/TPS.2011.2157942. 74. Chang H.W., Huang P.K., Yeh J.W., Davison A., Tsau C.H., Yang C.C. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi) N coatings. Surface and Coatings Technology , 2008, vol. 202, pp. 3360–3366. DOI: 10.1016/j.surfcoat.2007.12.014. 75. Cao Z.H., MaY.J., Cai Y.P., Wang G.J., Meng X.K. High strength dual-phase high entropy alloys with a tunable monolayer thickness. Scripta Materialia , 2019, vol. 173, pp. 149–153. DOI: 10.1016/j.scriptamat.2019.08.018. 76. Wei R., Tao J., Sun H., Chen C., Sun G.W., Li F.S. Soft magnetic Fe 26.7 Co 26.7 Ni 26.6 Si 9 B 11 high entropy metallic glass with good bending ductility. Materials Letters , 2017, vol. 197, pp. 87–89. DOI: 10.1016/j.matlet.2017.03.159. 77. Tong Y., Qiao J.C., Pelletier J.M., Yao Y. Strong metallic glass: TiZrHfCuNiBe high entropy alloy. Journal of Alloys and Compounds , 2020, vol. 820, art. 153119. DOI: 10.1016/j.jallcom.2019.153119. 78. Bashev V.F., Kushnerev A.I. Struktura i svoistva litykh i zhidkozakalennykh vysokoentropiinykh splavov sistemy Al-Cu-Fe-Ni-Si [Structure and properties of cast and splat-quenched high-entropy Al–Cu–Fe–Ni–Si alloys]. Fizika metallov i metallovedenie = Physics of Metals and Metallography , 2017, vol. 118, no. 1, pp. 42–50. DOI: 10.7868/S001532301610003X. (In Russian). 79. Firstov S.A., Karpov M.I., Gorban’ V.F., Korzhov V.P., Krapivka N.A., Stroganova T.S. Struktura i mekhanicheskie svoistva zharoprochnogo kompozita na osnove vysokoentropiinogo splava [The structure and mechanical properties of heat resistant composite material based of high entropy alloys]. Zavodskaya laboratoriya. Diagnostika materialov = Industrial laboratory. Materials diagnostics , 2015, vol. 81, no. 6, pp. 28–33. (In Russian). 80. Firstov S.A., Karpov M.I., Korzhov V.P., Gorban’ V.F., Krapivka N.A., Stroganova T.S. Struktura i svoistva sloistogo kompozita iz vysokoentropiinogo splava s karbidnym i intermetallidnym uprochneniem [Structure and properties of a laminated composite material made of high-entropy alloy with carbide and intermetallic hardening]. Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya = Bulletin of the Russian Academy of Sciences: Physics , 2015, vol. 79, no. 9, pp. 1267–1275. DOI: 10.7868/S0367676515090057. (In Russian). 81. Gasan H., Oȥcan A. New eutectic high-entropy alloys based on Co-Cr-Fe-Mo-Ni-Al: design, characterization and mechanical properties. Metals and Materials International , 2020, vol. 26, pp. 1152–1167. DOI: 10.1007/s12540- 019-00515-9. 82. Shaisultanov D.G. Struktura i mekhanicheskie svoistva vysokoentropiinykh splavov sistemy CoCrFeNiX (X=Mn, V, Mn i V, Al i Cu). Diss. kand. tekhn. nauk [Structure and mechanical properties of high-entropy alloys of CoCrFeNiX system (X = Mn, V, Mn and V, Al and Cu). PhD eng. sci. diss.]. Belgorod, 2015. 142 p.

RkJQdWJsaXNoZXIy MTk0ODM1