Review of alloys developed using the entropy approach
OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 23 No. 2 2021 121. Tsai C.W., TsaiM.H.,Yeh J.W.,YangC.C. Effect of temperature onmechanical properties ofAl 0.5 CoCrCuFeNi wrought alloy. Journal of Alloys and Compounds , 2010, vol. 490 (1–2), pp. 160–165. DOI: 10.1016/j. jallcom.2009.10.088. 122. KuznetsovA.V., Salishchev G.A., Sen’kov O.N., Stepanov N.D., Shaisultanov D.G. Vliyanie mikrostruktury na mekhanicheskie svoistva pri rastyazhenii vysokoentropiinogo splava AlCoCrCuFeNi [Microstructure influence on tensile mechanical properties of an AlCoCrCuFeNi high-entropy alloy]. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Matematika. Fizika = Belgorod State University Scientific Bulletin. Mathematics and Physics , 2012, no. 11, pp. 182–186. 123. He F., Wang Z., Wu Q., Wang J., Liu C.T. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scripta Materialia , 2017, vol. 126, pp. 15–19. DOI: 10.1016/j.scriptamat.2016.08.008. 124. Huang Y.-C., Tsao C.-S., Wu S.-K., Lin C., Chen C.-H. Nano-precipitates in severely deformed and low- temperature agedCoCrFeMnNi high-entropy alloy studied by synchrotron small-angleX-ray scattering. Intermetallics , 2019, vol. 105, pp. 146–152. DOI: 10.1016/j.intermet.2018.12.003. 125. Dahlborg U., Cornide J., Calvo-Dahlborg M., Hansen T.S., Fitch A., Leong Z., Chambreland S., Goodal R. Srtucture of some CoCrFeNi and CoCrFeNiPd multicomponent HEA alloys by diffraction techniques. Journal of Alloys and Compounds , 2016, vol. 681, pp. 330–341. DOI: 10.1016/j.jallcom.2016.04.248. 126. Senkov O.N., Zhang C., Pilchak A.L., Payton E.J., Woodward C., Zhang F. CALPHAD-aided development of quaternary multi-principal element refractory alloys based on NbTiZr. Journal of Alloys and Compounds , 2019, vol. 783, pp. 729–742. DOI: 10.1016/j.jallcom.2018.12.325. 127. Miracle D.B., Miller J.D., Senkov O.N., Woodward C., Uchic M.D., Tiley J. Exploration and development of high entropy alloys for structural applications. Entropy , 2014, vol. 16 (1), pp. 494–525. DOI: 10.3390/e16010494. 128. Raturi A., Aditya C.J., Gurao N.P., Biswas K. ICME approach to explore equiatomic and non- equiatomic single phase BCC refractory high entropy alloys. Journal of Alloys and Compounds , 2019, vol. 806, pp. 587–595. DOI: 10.1016/j.jallcom.2019.06.387. 129. Menou E., Tancret F., Toda-Caraballo I., Ramstein G., Castany P., Bertrand E., Gautier N., Rivera Diaȥ- Del-Castillo P.E.J. Computational design of light and strong high entropy alloys (HEA): obtainment of an extremely high specific solid solution hardening. Scripta Materialia , 2018, vol. 156, pp. 120–123. DOI: 10.1016/j. scriptamat.2018.07.024. 130. Komarov F.F., Pogrebnyak A.D., Konstantitnov S.V. Radiatsionnaya stoikost’ vysokoentropiinykh nanostrukturirovannykh pokrytii (Ti, Hf, Zr, V, Nb) N [Radiation resistance of high-entropy nanostructured (Ti, Hf, Zr, V, Nb)N coatings]. Zhurnal tekhnicheskoi fiziki = Technical Physics. The Russian Journal of Applied Physics , 2015, no. 85 (10), pp. 105–110. (In Russian). 131. Tsai M.-H., Wang C.-W., Lai C.-H., Yeh J.-W., Can J.-Y. Thermally stable amorphous (AlMoNbSiTaTiVZr) 50N50 nitride film as diffusion barrier in copper metallization. Applied Physics Letters , 2008, vol. 92, art. 052109. DOI: 10.1063/1.2841810. 132. Guo N.N., Wang L., Luo L.S., Li X.Z., Su Y.Q., Guo J.J., Fu H.Z. Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Materials and Design , 2015, vol. 81, pp. 87–94. DOI: 10.1016/j. matdes.2015.05.019. 133. Juan C.-C., Tsai M.-H., Tsai C.-W., Lin C.-M., Wang W.-R., Yang C.-C., Chen S.-K., Lin S.-J., Yeh J.-W. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics , 2015, vol. 62, pp. 76–83. DOI: 10.1016/j.intermet.2015.03.013. 134. Chen H., Kauffmann A., Gorr B., Schliephake D., Seemüller C., Wagner J.N., Christ H.-J., Heilmaier M. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high- entropy alloy Nb-Mo-Cr-Ti-Al. Journal of Alloys and Compounds , 2016, vol. 661, pp. 206–215. DOI: 10.1016/j. jallcom.2015.11.050. 135. Zhang Y., Liu Y., Li Y., Chen X., Zhang H. Microstructure and mechanical properties of a refractory HFNbTiVSi0.5 high-entropy alloy composite. Materials Letters , 2016, vol. 174, pp. 82–85. DOI: 10.1016/j. matlet.2016.03.092. 136. Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O. A fracture-resistanz high-entropy alloy for cryogenic applications. Science , 2014, vol. 345 (6201), pp. 1153–1158. DOI: 10.1126/ science.1254581. 137. Vinnik D., Zhivulin V., Trofimov E., Starikov A., Zherebtsov D., Zaitseva O., Gudkova S., Taskaev S., Klygach D., Vakhitov M., Sander E., Sherstyuk D., Trukhanov A. Extremely polysubstituted magnetic material based on magnetoplumbite with a hexagonal structure: synthesis, structure, properties, prospects. Nanomaterials (Basel) , 2019, vol. 9 (4). DOI: 10.3390/nano9040559.
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1