Experimental study of the relationship between the vibro-acoustic parameters of the grinding process and the macro-roughness of the treated surface

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 technology Conclusions 1. The parameter of the sound level measured during grinding is complicated due to the stochastic nature of the grinding process; however, there is a general increase in the course of processing. 2. We qualitatively showed the presence of two characteristic stages in the increase of the sound level of the grinding process, which are consistent with the blunting stages of the grinding wheel according to [13, 16–18]. 3. The growing amplitudes of the TS vibrations during grinding directly influence the formation of the macro-profile of the workpiece surface being processed. The increase in vibration during processing depends on the infeed rate. 4. We developed mathematical regression models reflecting the influence of the factors of the radial feed rate (SR, mm/min) and the running time of the grinding wheel (t, min) on the sound level (β, dB) and the deviation from the cylindricality of the grounded sample (Δ, mm). We also developed a general model of the dependence of the cylindricality deviations on the sound level, which allows the prediction of the deviation from cylindricality in terms of the sound level at a given infeed rate. The practical application of this model is limited by the following process conditions: – rotation speed of the wheel V = 50 m/s ; – infeed rate of the wheel SR, depending on the experiment, = 0.2; 0.3; 0.5; 0.8 mm/min; – rotation speed of the workpiece in the centers SC = 25 m/min; – duration of processing is up to 5 min; – for grinding wheels made of white fused alumina on a ceramic bond; – for steel 45 workpieces with a diameter of 60–80 mm. 5. The sound level can be used as an indirect indicator of the current state of the cutting tool, which allows one to assess the level of vibrations and to predict the product quality using the macrotopography of the treated surface. References 1. Puerto P., Fernández R., Madariaga J., Arana J., Gallego I. Evolution of surface roughness in grinding and its relationship with the dressing parameters and the radial wear. Procedia Engineering , 2013, vol. 63, pp. 174–182. DOI: 10.1016/j.proeng.2013.08.181. 2. Ahmer M., Marklund P., Gustafsson M., Berglund K. A unified approach towards performance monitoring and condition-based maintenance in grinding machines. Procedia CIRP , 2020, vol. 93, pp. 1388–1393. DOI: 10.1016/j. procir.2020.04.094. 3. Taewan Lee E., Fan Z., Sencer B. Real-time grinding wheel condition monitoring using linear imaging sensor. Procedia Manufacturing , 2020, vol. 49, pp. 139–143. DOI: 10.1016/j.promfg.2020.07.009. 4. Ignatyev A.A., Konovalov V.V., Kozlov D.V. Opredelenie periodichnosti pravki shlifoval’nogo kruga po vibroakusticheskim kolebaniyam [Grinding wheel dressing frequency based on vibroacoustic fluctuations]. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo = Vestnik Saratov State Technical University , 2014, no. 1 (74), pp. 71–74. 5. Zakhezin A.M., Malysheva T.V. Opredelenie iznosa shlifoval’nogo kruga po parametram vibratsii stanka [Determination of grinding wheel wear by vibration parameters of the machine]. Vestnik YuUrGU. Seriya: Mashinostroenie = Bulletin of the South Ural State University. Series: Mechanical Engineering , 2007, no. 11, pp. 48–53. 6. Mahata S., Shakya P., Babu N.R., Prakasam P.K. In-process characterization of surface finish in cylindrical grinding process using vibration and power signals. Procedia CIRP , 2020, vol. 88, pp. 335–340. DOI: 10.1016/j. procir.2020.05.058. 7. Otaghvar M.H., Hahn B., Werner H., Omiditabrizi H., Bahre D. A novel approach to roundness generation analysis in centerless through-feed grinding in consider of decisive parameters of grinding gap by use of 3D kinematic simulation. Procedia CIRP , 2018, vol. 77, pp. 247–250. DOI: 10.1016/j.procir.2018.09.007. 8. Otaghvar M.H., Hahn B., Werner H., Omiditabrizi H., Bahre D. Optimization of centerless through-feed grinding using 3D kinematic simulation. Procedia CIRP , 2019, vol. 79, pp. 308–312. – DOI: 10.1016/j.procir. 2019.02.072. 9. Ahrens M., Fischer R., DagenM., Denkena B., Ortmaier T.Abrasion monitoring and automatic chatter detection in cylindrical plunge grinding. Procedia CIRP , 2013, vol. 8, pp. 374–378. DOI: 10.1016/j.procir.2013.06.119.

RkJQdWJsaXNoZXIy MTk0ODM1