On the issue of selecting and optimizing parameters of continuous laser welding of cast iron
OBRABOTKAMETALLOV Vol. 23 No. 3 2021 technology 7. Benyounis K.Y., Fakron O.M.A., Abboud J.H., Olabi A.G., Hashmi M.J.S. Surface melting of nodular cast iron by Nd-YAG laser and TIG. Journal of Materials Processing Technology , 2005, vol. 170, iss. 1, pp. 127–132. DOI: 10.1016/j.jmatprotec.2005.04.108. 8. Bhatnagar R.K., Gupta G. A review on weldability of cast iron. International Journal of Scientific and Engineering Research , 2016, vol. 7, iss. 5, pp. 126–130. Available at: https://www.ijser.org/researchpaper/A- REVIEW-ON-WELDABILITY-OF-CAST-IRON.pdf (accessed 13.08.2021). 9. Kou S. Welding metallurgy . John Wiley & Sons, 2003. 468 p. 10. Fabbro R. Depth dependence and keyhole stability at threshold, for different laser welding regimes. Applied Sciences , 2020, vol. 10, iss. 4, p. 1487. DOI: 10.3390/app10041487. 11. Panchenko V.Ya., ed. Lazernye tekhnologii obrabotki metallov: sovremennye problemy fundamental’nykh issledovanii i prikladnykh razrabotok [Laser technologies of metal processing: modern problems of fundamental research and applied developments]. Moscow, Fizmatlit Publ., 2009. 664 p. ISBN 978-5-9221-1023-5. 12. Lankalapalli K.N., Tu J.F., Gartner M. A model for estimating penetration depth of laser welding processes. Journal of Physics D: Applied Physics , 1996, vol. 29, iss. 7, pp. 1831–1841. DOI: 10.1088/0022-3727/29/7/018. 13. Tan W., Bailey N.S., Shin Y.C. Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation. Journal of Physics D: Applied Physics , 2013, vol. 46, iss. 5, p. 055501. DOI: 10.1088/0022-3727/46/5/055501. 14. Dikova T., Stavrev D. Behaviour of graphite in laser surface hardening of irons. Machines, Technologies, Materials , 2007, vol. 4–5, iss. 9, pp. 98–101. 15. Oussaid K., El Ouafi A., Chebak A. Experimental investigation of laser welding process in overlap joint configuration. Journal of Materials Science and Chemical Engineering , 2019, vol. 7, pp. 16–31. DOI: 10.4236/ msce.2019.73002. 16. Fotovvati B. Wayne S.F., Lewis G. Asadi E., Ferro P. A review on melt-pool characteristics in laser welding of metals. Advances in Materials Science and Engineering , 2018, vol. 2018, p. 4920718. DOI: 10.1155/2018/4920718. 17. Gilev V.G., Morozov E.A., Purtov I.B., Rusin E.S. Issledovanie mikrostruktury i mikrotverdosti zon lazernogo oplavleniya chuguna nirezist ChN16D7GKh [Microstructure and microhardness research of Ni-rezist cast iron after laser surface melting]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk = Proceedings of the Samara Scientific Center of the Russian Academy of Sciences , 2014, vol. 16, no. 6, pp. 227–233. 18. Metzbower E.A. Penetration depth in laser beam welding. Welding Research Supplement , 1993, vol. 407, pp. 403–407. 19. Ravikumar S.M., Vijian Dr.P. Optimization of weld bead geometry in Shielded Metal Arc Welding using Taguchi Based Grey Relational Analysis. International Journal of Mechanical and Mechatronics Engineering , 2014, vol. 14, iss. 4, pp. 86–91. 20. Khaimovich A.I., Sanchugov V.I., Stepanenko I.S., Smelov V.G. Optimizatsiya selektivnogo lazernogo splavleniya metodom otsenki mnozhestvennykh parametrov kachestva v dvigatelestroenii [Optimization of selective laser melting by evaluation method of multiple quality characteristics]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk = Proceedings of the Samara Scientific Center of the Russian Academy of Sciences , 2018, vol. 20, no. 6, pp. 41–46. Conflicts of Interest The authors declare no conflict of interest. 2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) .
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1