On the issue of selecting and optimizing parameters of continuous laser welding of cast iron

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 technology 7. Benyounis K.Y., Fakron O.M.A., Abboud J.H., Olabi A.G., Hashmi M.J.S. Surface melting of nodular cast iron by Nd-YAG laser and TIG. Journal of Materials Processing Technology , 2005, vol. 170, iss. 1, pp. 127–132. DOI: 10.1016/j.jmatprotec.2005.04.108. 8. Bhatnagar R.K., Gupta G. A review on weldability of cast iron. International Journal of Scientific and Engineering Research , 2016, vol. 7, iss. 5, pp. 126–130. Available at: https://www.ijser.org/researchpaper/A- REVIEW-ON-WELDABILITY-OF-CAST-IRON.pdf (accessed 13.08.2021). 9. Kou S. Welding metallurgy . John Wiley & Sons, 2003. 468 p. 10. Fabbro R. Depth dependence and keyhole stability at threshold, for different laser welding regimes. Applied Sciences , 2020, vol. 10, iss. 4, p. 1487. DOI: 10.3390/app10041487. 11. Panchenko V.Ya., ed. Lazernye tekhnologii obrabotki metallov: sovremennye problemy fundamental’nykh issledovanii i prikladnykh razrabotok [Laser technologies of metal processing: modern problems of fundamental research and applied developments]. Moscow, Fizmatlit Publ., 2009. 664 p. ISBN 978-5-9221-1023-5. 12. Lankalapalli K.N., Tu J.F., Gartner M. A model for estimating penetration depth of laser welding processes. Journal of Physics D: Applied Physics , 1996, vol. 29, iss. 7, pp. 1831–1841. DOI: 10.1088/0022-3727/29/7/018. 13. Tan W., Bailey N.S., Shin Y.C. Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation. Journal of Physics D: Applied Physics , 2013, vol. 46, iss. 5, p. 055501. DOI: 10.1088/0022-3727/46/5/055501. 14. Dikova T., Stavrev D. Behaviour of graphite in laser surface hardening of irons. Machines, Technologies, Materials , 2007, vol. 4–5, iss. 9, pp. 98–101. 15. Oussaid K., El Ouafi A., Chebak A. Experimental investigation of laser welding process in overlap joint configuration. Journal of Materials Science and Chemical Engineering , 2019, vol. 7, pp. 16–31. DOI: 10.4236/ msce.2019.73002. 16. Fotovvati B. Wayne S.F., Lewis G. Asadi E., Ferro P. A review on melt-pool characteristics in laser welding of metals. Advances in Materials Science and Engineering , 2018, vol. 2018, p. 4920718. DOI: 10.1155/2018/4920718. 17. Gilev V.G., Morozov E.A., Purtov I.B., Rusin E.S. Issledovanie mikrostruktury i mikrotverdosti zon lazernogo oplavleniya chuguna nirezist ChN16D7GKh [Microstructure and microhardness research of Ni-rezist cast iron after laser surface melting]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk = Proceedings of the Samara Scientific Center of the Russian Academy of Sciences , 2014, vol. 16, no. 6, pp. 227–233. 18. Metzbower E.A. Penetration depth in laser beam welding. Welding Research Supplement , 1993, vol. 407, pp. 403–407. 19. Ravikumar S.M., Vijian Dr.P. Optimization of weld bead geometry in Shielded Metal Arc Welding using Taguchi Based Grey Relational Analysis. International Journal of Mechanical and Mechatronics Engineering , 2014, vol. 14, iss. 4, pp. 86–91. 20. Khaimovich A.I., Sanchugov V.I., Stepanenko I.S., Smelov V.G. Optimizatsiya selektivnogo lazernogo splavleniya metodom otsenki mnozhestvennykh parametrov kachestva v dvigatelestroenii [Optimization of selective laser melting by evaluation method of multiple quality characteristics]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk = Proceedings of the Samara Scientific Center of the Russian Academy of Sciences , 2018, vol. 20, no. 6, pp. 41–46. Conflicts of Interest The authors declare no conflict of interest.  2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) .

RkJQdWJsaXNoZXIy MTk0ODM1