Calculation of radial material removal and the thickness of the layer with the current roughness when grinding brittle non-metallic materials

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 44 TECHNOLOGY 4. Hou Z.B., Komanduri R. On the mechanics of the grinding process. Pt. 1. Stochastic nature of the grinding process. International Journal of Machine Tools and Manufacture , 2003, vol. 43, pp. 1579–1593. DOI: 10.1016/ S0890-6955(03)00186-X. 5. Lajmert P., Sikora V., Ostrowski D. A dynamic model of cylindrical plunge grinding process for chatter phenomena investigation. MATEC Web of Conferences , 2018, vol. 148, pp. 09004–09008. DOI: 10.1051/ matecconf/20181480900. 6. Leonesio M., Parenti P., Cassinari A., Bianchi G. , Monn M. A time-domain surface grinding model for dynamic simulation. Procedia CIRP , 2012, vol. 4, pp. 166–171. DOI: 10.1016/j.procir.2012.10.030. 7. Sidorov D., Sazonov S., Revenko D. Building a dynamic model of the internal cylindrical grinding process. Procedia Engineering , 2016, vol. 150, pp. 400–405. DOI: 10.1016/j.proeng.2016.06.739. 8. Zhang N., Kirpitchenko I., Liu D.K. Dynamic model of the grinding process. Journal of Sound and Vibration , 2005, vol. 280, pp. 425–432. DOI: 10.1016/j.jsv.2003.12.006. 9. Ahrens M., Damm J., Dagen M., Denkena B., Ortmaier T. Estimation of dynamic grinding wheel wear in plunge grinding. Procedia CIRP , 2017, vol. 58, pp. 422–427. DOI: 10.1016/j.procir.2017.03.247. 10. Garitaonandia I., Fernandes M.H., Albizuri J. Dynamic model of a centerless grinding machine based on an updated FE model. International Journal of Machine Tools and Manufacture , 2008, vol. 48, pp. 832–840. DOI: 10.1016/j.ijmachtools.2007.12.001. 11. Tawakolia T., Reinecke H., Vesali A. An experimental study on the dynamic behavior of grinding wheels in high ef fi ciency deep grinding. Procedia CIRP , 2012, vol. 1, pp. 382–387. DOI: 10.1016/j.procir.2012.04.068. 12. Jung J., Kim P., Kim H., Seok J. Dynamic modeling and simulation of a nonlinear, non-autonomous grinding system considering spatially periodic waviness on workpiece surface. Simulation Modeling Practice and Theory , 2015, vol. 57, pp. 88–99. DOI: 10.1016/j.simpat.2015.06.005. 13. Yu H., Wang J., Lu Y. Modeling and analysis of dynamic cutting points density of the grinding wheel with an abrasive phyllotactic pattern. The International Journal of Advanced Manufacturing Technology , 2016, vol. 86, pp. 1933–1943. DOI: 10.1007/s00170-015-8262-0. 14. Guo J. Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding. The International Journal of Advanced Manufacturing Technology , 2014, vol. 75, pp. 1245–1252. DOI: 10.1007/ s00170-014-6189-5. 15. Soler Ya.I. , Le N.V., Si M.D. In fl uence of rigidity of the hardened parts on forming the shape accuracy during fl at grinding. MATEC Web of Conferences , 2017, vol. 129, p. 01076. DOI: 10.1051/matecconf/201712901076. 16. Soler Ya.I., Khoang N.A. [In fl uence of the depth of cut on the height roughness of tools made of U10A steel during surface grinding with cubic boron nitride wheels]. Aviamashinostroenie i transport Sibiri: sbornik materialov IX Vserossiiskoi nauchno-prakticheskoi konferentsii [Aircraft engineering and transport of Siberia. Proceedings of the 9th All-Russian Scienti fi c and Practical Conference]. Irkutsk National Research Technical University. Irkutsk, 2017, pp. 250–254. (In Russian) . 17. Gusev V.V., Moiseyev D.A. Iznos almaznogo shlifoval’nogo kruga pri obrabotke keramiki [Wear of a diamond grinding wheel when processing ceramics]. Progressivnye tekhnologii i sistemy mashinostroeniya = Progressive Technologies and Systems of Mechanical Engineering , 2019, no. 4 (67), pp. 25–29. 18. Bratan S.M., Roshchupkin S.I., Kharchenko A.O., Chasovitina A.S. Veroyatnostnaya model’ udaleniya poverkhnostnogo sloya pri shlifovanii khrupkikh nemetallicheskikh materialov [Probabilistic model of surface layer removal when grinding brittle non-metallicmaterials]. Obrabotkametallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2021, vol. 23, no. 2, pp. 6–16. DOI: 10.17212/1994-6309-2021-23.2-6-16. 19. Bratan S.M., Roshchupkin S.I., Kharchenko A.O., Chasovitina A.S. Modelirovanie s”ema pripuska v zone kontakta pri vnutrennem shlifovanii khrupkikh nemetallicheskikh materialov [Simulation of the stock removal in the contact zone during internal grinding of brittle non-metallic materials]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2021, vol. 23, no. 2, pp. 31–39. DOI: 10.17212/1994-6309-2021-23.2-31-39. 20. Bratan S., Roshchupkin S., Kolesov A., Bogutsky B. Identi fi cation of removal parameters at combined grinding of conductive ceramic materials. MATEC Web of Conferences , 2017, vol. 129, p. 01079. DOI: 10.1051/ matecconf/201712901079. Con fl icts of Interest The authors declare no con fl ict of interest.  2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1