Calculation of radial material removal and the thickness of the layer with the current roughness when grinding brittle non-metallic materials

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 technology material by radial removal and the distribution of the current roughness formed after each radial removal in the contact zone. The proposed analytical dependences are valid for a wide range of grinding modes of holes in sitall blanks, the characteristics of wheels and a number of other technological factors [18, 19, 20]. The obtained expressions allow us to find the maximum depth of micro-cutting and the thickness of the layer with the current surface roughness when grinding brittle non-metallic materials. A comparison of the calculated and experimental data indicates its compliance with almost all feed values, which confirms the adequacy of the obtained equations, which model the real process of grinding holes made of brittle non- metallic materials quite well. References 1. Novoselov Yu.K. Dinamika formoobrazovaniya poverkhnostei pri abrazivnoi obrabotke [Dynamics of surface shaping during abrasive processing]. Sevastopol, SevNTU Publ., 2012. 304 p. ISBN 978-617-612-051-3. 2. Kassen G., Werner G. Kinematische Kenngrößen des Schleifvorganges [Kinematic parameters of the grinding process]. Industrie-Anzeiger = Industry Scoreboard , 1969, no. 87, pp. 91–95. (In German). 3. Malkin S., Guo C . Grinding technology: theory and applications of machining with abrasives . New York, Industrial Press, 2008. 372 р. ISBN 978-0-8311-3247-7. 4. Hou Z.B., Komanduri R. On the mechanics of the grinding process. Pt. 1. Stochastic nature of the grinding process. International Journal of Machine Tools and Manufacture , 2003, vol. 43, pp. 1579–1593. DOI: 10.1016/ S0890-6955(03)00186-X. 5. Lajmert P., Sikora V., Ostrowski D. A dynamic model of cylindrical plunge grinding process for chatter phenomena investigation. MATEC Web of Conferences , 2018, vol. 148, pp. 09004–09008. DOI: 10.1051/ matecconf/20181480900. 6. Leonesio M., Parenti P., Cassinari A., Bianchi G. , Monn M. A time-domain surface grinding model for dynamic simulation. Procedia CIRP , 2012, vol. 4, pp. 166–171. DOI: 10.1016/j.procir.2012.10.030. 7. Sidorov D., Sazonov S., Revenko D. Building a dynamic model of the internal cylindrical grinding process. Procedia Engineering , 2016, vol. 150, pp. 400–405. DOI: 10.1016/j.proeng.2016.06.739. 8. Zhang N., Kirpitchenko I., Liu D.K. Dynamic model of the grinding process. Journal of Sound and Vibration , 2005, vol. 280, pp. 425–432. DOI: 10.1016/j.jsv.2003.12.006. 9. Ahrens M., Damm J., Dagen M., Denkena B., Ortmaier T. Estimation of dynamic grinding wheel wear in plunge grinding. Procedia CIRP , 2017, vol. 58, pp. 422–427. DOI: 10.1016/j.procir.2017.03.247. 10. Garitaonandia I., Fernandes M.H., Albizuri J. Dynamic model of a centerless grinding machine based on an updated FE model. International Journal of Machine Tools and Manufacture , 2008, vol. 48, pp. 832–840. DOI: 10.1016/j.ijmachtools.2007.12.001. 11. Tawakolia T., Reinecke H., Vesali A. An experimental study on the dynamic behavior of grinding wheels in high efficiency deep grinding. Procedia CIRP , 2012, vol. 1, pp. 382–387. DOI: 10.1016/j.procir.2012.04.068. 12. Jung J., Kim P., Kim H., Seok J. Dynamic modeling and simulation of a nonlinear, non-autonomous grinding system considering spatially periodic waviness on workpiece surface. Simulation Modeling Practice and Theory , 2015, vol. 57, pp. 88–99. DOI: 10.1016/j.simpat.2015.06.005. 13. Yu H., Wang J., Lu Y. Modeling and analysis of dynamic cutting points density of the grinding wheel with an abrasive phyllotactic pattern. The International Journal of Advanced Manufacturing Technology , 2016, vol. 86, pp. 1933–1943. DOI: 10.1007/s00170-015-8262-0. 14. Guo J. Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding. The International Journal of Advanced Manufacturing Technology , 2014, vol. 75, pp. 1245–1252. DOI: 10.1007/ s00170-014-6189-5. 15. Soler Ya.I. , Le N.V., Si M.D. Influence of rigidity of the hardened parts on forming the shape accuracy during flat grinding. MATEC Web of Conferences , 2017, vol. 129, p. 01076. DOI: 10.1051/matecconf/201712901076. 16. Soler Ya.I., Khoang N.A. [Influence of the depth of cut on the height roughness of tools made of U10A steel during surface grinding with cubic boron nitride wheels]. Aviamashinostroenie i transport Sibiri: sbornik materialov IX Vserossiiskoi nauchno-prakticheskoi konferentsii [Aircraft engineering and transport of Siberia. Proceedings of the 9th All-Russian Scientific and Practical Conference]. Irkutsk National Research Technical University. Irkutsk, 2017, pp. 250–254. (In Russian) .

RkJQdWJsaXNoZXIy MTk0ODM1