Improving the efficiency of surface-thermal hardening of machine parts in conditions of combination of processing technologies, integrated on a single machine tool base

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 69 TECHNOLOGY 23. Sales W.F., Schoop J., Silva L.R.R., Machado Á.R., Jawahir I.S. A review of surface integrity in machining of hardened steels. Journal of Manufacturing Processes , 2020, vol. 58, pp. 136–162. DOI: 10.1016/j.jmapro.2020.07.040. 24. Amigo F.J., Urbikain G., Pereira O., Fernández-Lucio P., Fernández-Valdivielso A., López de Lacalle L.N. Combination of high feed turning with cryogenic cooling on Haynes 263 and Inconel 718 superalloys. Journal of Manufacturing Processes , 2020, vol. 58, pp. 208–222. DOI: 10.1016/j.jmapro.2020.08.029. 25. Borisov M.A., Lobanov D.V., Yanyushkin A.S. Gibridnaya tekhnologiya elektrokhimicheskoi obrabotki slozhnopro fi l’nykh izdelii [Hybrid technology of electrochemical processing of complex pro fi les]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2019, vol. 21, no. 1, pp. 25–34. DOI: 10.17212/1994-6309-2019-21.1-25-34. 26. Gao K., Qin X. Effect of feed path on the spot continual induction hardening for different curved surfaces of AISI 1045 steel. International Communications in Heat and Mass Transfer , 2020, vol. 115, p. 104632. DOI: 10.1016/j. icheatmasstransfer.2020.104632. 27. Skeeba V.Yu., Ivantsivsky V.V. Gibridnoe metalloobrabatyvayushchee oborudovanie: povyshenie effektivnosti tekhnologicheskogo protsessa obrabotki detalei pri integratsii poverkhnostnoi zakalki i abrazivnogo shlifovaniya [Hybrid metal working equipment: improving the effectiveness of the details processing under the integration of surface quenching and abrasive grinding]. Novosibirsk, NSTU Publ., 2018. 312 p. ISBN 978-5-7782- 3690-5. 28. Ivantsivsky V.V., Skeeba V.Yu. Gibridnoe metalloobrabatyvayushchee oborudovanie. Tekhnologicheskie aspekty integratsii operatsii poverkhnostnoi zakalki i abrazivnogo shlifovaniya [Hybrid metal working equipment. Technological aspects of integrating the operations of surface hardening and abrasive grinding]. Novosibirsk, NSTU Publ., 2019. 348 p. ISBN 978-5-7782-3988-3. 29. Ding H.T., Shin Y.C. Laser-assisted machining of hardened steel parts with surface integrity analysis. International Journal of Machine Tools and Manufacture , 2010, vol. 50, iss. 1, pp. 106–114. DOI: 10.1016/j. ijmachtools.2009.09.001. 30. You K., Yan G., Luo X., Gilchrist M.D., Fang F. Advances in laser assisted machining of hard and brittle materials. Journal of Manufacturing Processes , 2020, vol. 58, pp. 677–692. DOI: 10.1016/j.jmapro.2020.08.034. 31. Karthikeyan K.M.B., Balasubramanian T., Thillaivanan V., Jangetti G.V. Laser transformation hardening of EN24alloysteel. MaterialsToday:Proceedings , 2020, vol. 22, pt. 4, pp. 3048–3055.DOI: 10.1016/j.matpr.2020.03.440. 32. Li F., Li X., Wang T., Rong Y.(K.), Liang S.Y. In-process residual stresses regulation during grinding through induction heating with magnetic fl ux concentrator. International Journal of Mechanical Sciences , 2020, vol. 172, p. 105393. DOI: 10.1016/j.ijmecsci.2019.105393. 33. Asadzadeh M.Z., Raninger P., Prevedel P., Ecker W., Mücke M. Hybrid modeling of induction hardening processes. Applications in Engineering Science , 2021, vol. 5, p. 100030. DOI: 10.1016/j.apples.2020.100030. 34. Areitioaurtena M., Segurajauregi U., Urresti I., Fisk M., Ukar E. Predicting the induction hardened case in 42CrMo4 cylinder. Procedia CIRP , 2020, vol. 87, pp. 545–550. DOI: 10.1016/j.procir.2020.02.034. 35. Javaheri V., Haiko O., Sadeghpour S., Valtonen K., Kömi J., Porter D. On the role of grain size on slurry erosion behavior of a novel medium-carbon, low-alloy pipeline steel after induction hardening. Wear , 2021, vol. 476, p. 203678. DOI: 10.1016/j.wear.2021.203678. 36. Hammouma C., Zeroug H. Enhanced frequency adaptation approaches for series resonant inverter control under workpiece permeability effect for induction hardening applications. Engineering Science and Technology, an International Journal , 2021. DOI: 10.1016/j.jestch.2021.05.010. 37. Skeeba V.Yu. Gibridnoe tekhnologicheskoe oborudovanie: povyshenie effektivnosti rannikh stadii proektirovaniya kompleksirovannykh metalloobrabatyvayushchikh stankov [Hybrid process equipment: improving the ef fi ciency of the integrated metalworking machines initial designing]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2019, vol. 21, no. 2, pp. 62–83. DOI: 10.17212/1994-6309-2019-21.2-62-83. 38. Mühl F., Damon J., Dietrich S., Schulze V. Simulation of induction hardening: simulative sensitivity analysis with respect to material parameters and the surface layer state. Computational Materials Science , 2020, vol. 184, p. 109916. DOI: 10.1016/j.commatsci.2020.109916. 39. Skeeba V.Yu., PushninV.N., Erokhin I.A., Kornev D.Yu.Analiz napryazhenno-deformirovannogo sostoyaniya materiala pri vysokoenergeticheskom nagreve tokami vysokoi chastoty [Analysis of the stress-strain state of the material under high-energy heating by high frequency currents]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2014, no. 3 (64), pp. 90–102.

RkJQdWJsaXNoZXIy MTk0ODM1