Improving the efficiency of surface-thermal hardening of machine parts in conditions of combination of processing technologies, integrated on a single machine tool base

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 technology Fig. 15. The quality of the surface layer part after diamond smoothing: а – topography and surface profilogram; b – the distribution of microhardness and residual stresses in the surface layer and its microstructure a b surface hardening by 3.5...4.1 times, and reduce energy consumption by 9.5...11.3 times. The implementation of the presented work allowed us to obtain information for solving a critical problem of modern mechanical engineering: ensuring a given high quality of products, reducing the production cycle of manufacturing, minimizing the cost of manufactured products and forming new surface characteristics of parts. References 1. Brecher C., Özdemir D. Integrative production technology: theory and applications . Springer International Publ., 2017. 1100 p. DOI: 10.1007/978-3-319-47452-6. ISBN 978-3-319-47451-9. ISBN 978-3-319-47452-6. 2. Rizzo A., Goel S., Grilli K.M., Iglesias R., Jaworska L., Lapkovskis V., Novak P., Postolnyi B.O., Valerini D. The critical raw materials in cutting tools for machining applications: a review. Materials , 2020, vol. 13, p. 1377. DOI: 10.3390/ma13061377. 3. Makarov V.M., Lukina S.V. Unikal’naya sinergiya gibridnykh stankov [Unique synergy of hybrid machines]. Ritm: Remont. Innovatsii. Tekhnologii. Modernizatsiya = RITM: Repair. Innovation. Technologies. Modernization , 2016, no. 8, pp. 18–25. 4. Makris S., Aivaliotis P. Framework for accurate simulation and model-based control of hybrid manufacturing processes. Procedia CIRP , 2021, vol. 97, pp. 470–475. DOI: 1016/j.procir.2020.07.007. 5. Garro О., Martin P., Veron M. Shiva a multiarms machine tool. CIRP Annals – Manufacturing Technology , 1993, vol. 42, iss. 1, pp. 433–436. DOI: 10.1016/S0007-8506(07)62479-2. 6. Moriwaki T. Multi-functional machine tool. CIRP Annals – Manufacturing Technology , 2008, vol. 57, iss. 2, pp. 736–749. DOI: 10.1016/j.cirp.2008.09.004. 7. Boivie K., Karlsen R., Ystgaard P. The concept of hybrid manufacturing for high performance parts. South African Journal of Industrial Engineering , 2012, vol. 23, iss. 2, pp. 106–115. 8. Jeon Y., Lee C.M. Current research trend on laser assisted machining. International Journal of Precision Engineering and Manufacturing , 2012, vol. 13, iss. 2, pp. 311–317. DOI: 10.1007/s12541-012-0040-4. 9. Lauwers B., Klocke F., KlinkA., TekkayaA.E., Neugebauer R., McintoshD. Hybrid processes inmanufacturing. CIRP Annals , 2014, vol. 63, iss. 2, pp. 561–583. DOI: 10.1016/j.cirp.2014.05.003. 10. Yamazaki T. Development of a hybrid multi-tasking machine tool: integration of additive manufacturing technology with CNC machining. Procedia CIRP , 2016, vol. 42, pp. 81–86. DOI: 10.1016/j.procir.2016.02.193. 11. Yanyushkin A.S., Lobanov D.V., Arkhipov P.V. Research of influence of electric conditions of the combined electro-diamond machining on quality of grinding of hard alloys. IOP Conference Series: Materials Science and Engineering , 2015, vol. 91, p. 012051. DOI: 10.1088/1757-899X/91/1/012051. 12. Lauwers B., Chernovol N., Peeters B., Camp D.V., Riel T.V., Qian J. Hybrid manufacturing based on the combination of mechanical and electro physical–chemical processes. Procedia CIRP , 2020, vol. 95, pp. 649–661. DOI: 10.1016/j.procir.2020.11.003. 13. Berenji K.R., Karagüzel U., Özlü E., Budak E. Effects of turn-milling conditions on chip formation and surface finish. CIRP Annals , 2019, vol. 68, iss. 1, pp. 113–116. DOI: 10.1016/j.cirp.2019.04.067.

RkJQdWJsaXNoZXIy MTk0ODM1