Improving the efficiency of surface-thermal hardening of machine parts in conditions of combination of processing technologies, integrated on a single machine tool base

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 technology 14. Yang Y., Gong Y., Qu S., Rong Y., Sun Y., Cai M. Densification, surface morphology, microstructure and mechanical properties of 316L fabricated by hybrid manufacturing. The International Journal of Advanced Manufacturing Technology , 2018, vol. 97, iss. 5–8, pp. 2687–2696. DOI: 10.1007/s00170-018-2144-1. 15. Guerrini G., Fortunato A., Melkote S.N., Ascari A., Lutey A.H.A. Hybrid laser assisted machining: a new manufacturing technology for ceramic components. Procedia CIRP , 2018, vol. 74, pp. 761–764. DOI: 10.1016/j. procir.2018.08.015. 16. Mirzendehdel A.M., Behandish M., Nelaturi S. Topology optimization with accessibility constraint for multi- axis machining. Computer-Aided Design , 2020, vol. 122, p. 102825. DOI: 10.1016/j.cad.2020.102825. 17. Khatir F.A., Sadeghi M.H., Akar S. Investigation of surface integrity in the laser-assisted turning of AISI 4340 hardened steel. Journal of Manufacturing Processes , 2021, vol. 61, pp. 173–189. DOI: 10.1016/j.jmapro.2020.09.073. 18. Makarov V.M. Kompleksirovannye tekhnologicheskie sistemy: perspektivy i problemy vnedreniya [Well integrated technological systems: prospects and problems of implementation]. Ritm: Remont. Innovatsii. Tekhnologii. Modernizatsiya = RITM: Repair. Innovation. Technologies. Modernization , 2011, no. 6 (64), pp. 20–23. 19. Mitsuishi M., Ueda K., Kimura F., eds. Manufacturing systems and technologies for the new frontier : the 41st CIRP Conference on Manufacturing Systems, May 26–28, 2008, Tokyo, Japan. London, Springer, 2008. 556 p. ISBN 978-1-84800-267-8. DOI: 10.1007/978-1-84800-267-8. 20. Skeeba V., Pushnin V., Erohin I., Kornev D. Integration of production steps on a single equipment. Materials and Manufacturing Processes , 2015, vol. 30, iss. 12, pp. 1408–1411. DOI: 10.1080/10426914.2014.973595. 21. Liu J., Ye C., Dong Y. Recent development of thermally assisted surface hardening techniques: a review. Advances in Industrial and Manufacturing Engineering , 2021, vol. 2, p. 100006. DOI: 10.1016/j.aime.2020.100006. 22. Mühl F., Jarms J., Kaiser D., Dietrich S., Schulze V. Tailored bainitic-martensitic microstructures by means of inductive surface hardening for AISI4140. Materials and Design , 2020, vol. 195, p. 108964. DOI: 10.1016/j. matdes.2020.108964. 23. Sales W.F., Schoop J., Silva L.R.R., Machado Á.R., Jawahir I.S. A review of surface integrity in machining of hardened steels. Journal of Manufacturing Processes , 2020, vol. 58, pp. 136–162. DOI: 10.1016/j.jmapro.2020.07.040. 24. Amigo F.J., Urbikain G., Pereira O., Fernández-Lucio P., Fernández-Valdivielso A., López de Lacalle L.N. Combination of high feed turning with cryogenic cooling on Haynes 263 and Inconel 718 superalloys. Journal of Manufacturing Processes , 2020, vol. 58, pp. 208–222. DOI: 10.1016/j.jmapro.2020.08.029. 25. Borisov M.A., Lobanov D.V., Yanyushkin A.S. Gibridnaya tekhnologiya elektrokhimicheskoi obrabotki slozhnoprofil’nykh izdelii [Hybrid technology of electrochemical processing of complex profiles]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2019, vol. 21, no. 1, pp. 25–34. DOI: 10.17212/1994-6309-2019-21.1-25-34. 26. Gao K., Qin X. Effect of feed path on the spot continual induction hardening for different curved surfaces of AISI 1045 steel. International Communications in Heat and Mass Transfer , 2020, vol. 115, p. 104632. DOI: 10.1016/j. icheatmasstransfer.2020.104632. 27. Skeeba V.Yu., Ivantsivsky V.V.  Gibridnoe metalloobrabatyvayushchee oborudovanie: povyshenie effektivnosti tekhnologicheskogo protsessa obrabotki detalei pri integratsii poverkhnostnoi zakalki i abrazivnogo shlifovaniya  [Hybrid metal working equipment: improving the effectiveness of the details processing under the integration of surface quenching and abrasive grinding]. Novosibirsk, NSTU Publ., 2018. 312 p. ISBN 978-5-7782- 3690-5. 28. Ivantsivsky V.V., Skeeba V.Yu. Gibridnoe metalloobrabatyvayushchee oborudovanie. Tekhnologicheskie aspekty integratsii operatsii poverkhnostnoi zakalki i abrazivnogo shlifovaniya [Hybrid metal working equipment. Technological aspects of integrating the operations of surface hardening and abrasive grinding]. Novosibirsk, NSTU Publ., 2019. 348 p. ISBN 978-5-7782-3988-3. 29. Ding H.T., Shin Y.C. Laser-assisted machining of hardened steel parts with surface integrity analysis. International Journal of Machine Tools and Manufacture , 2010, vol. 50, iss. 1, pp. 106–114. DOI: 10.1016/j. ijmachtools.2009.09.001. 30. You K., Yan G., Luo X., Gilchrist M.D., Fang F. Advances in laser assisted machining of hard and brittle materials. Journal of Manufacturing Processes , 2020, vol. 58, pp. 677–692. DOI: 10.1016/j.jmapro.2020.08.034. 31. Karthikeyan K.M.B., Balasubramanian T., Thillaivanan V., Jangetti G.V. Laser transformation hardening of EN24alloysteel. MaterialsToday:Proceedings , 2020, vol. 22, pt. 4, pp. 3048–3055.DOI: 10.1016/j.matpr.2020.03.440. 32. Li F., Li X., Wang T., Rong Y.(K.), Liang S.Y. In-process residual stresses regulation during grinding through induction heating with magnetic flux concentrator. International Journal of Mechanical Sciences , 2020, vol. 172, p. 105393. DOI: 10.1016/j.ijmecsci.2019.105393.

RkJQdWJsaXNoZXIy MTk0ODM1