Improving the efficiency of surface-thermal hardening of machine parts in conditions of combination of processing technologies, integrated on a single machine tool base

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 technology 33. Asadzadeh M.Z., Raninger P., Prevedel P., Ecker W., Mücke M. Hybrid modeling of induction hardening processes. Applications in Engineering Science , 2021, vol. 5, p. 100030. DOI: 10.1016/j.apples.2020.100030. 34. Areitioaurtena M., Segurajauregi U., Urresti I., Fisk M., Ukar E. Predicting the induction hardened case in 42CrMo4 cylinder. Procedia CIRP , 2020, vol. 87, pp. 545–550. DOI: 10.1016/j.procir.2020.02.034. 35. Javaheri V., Haiko O., Sadeghpour S., Valtonen K., Kömi J., Porter D. On the role of grain size on slurry erosion behavior of a novel medium-carbon, low-alloy pipeline steel after induction hardening. Wear , 2021, vol. 476, p. 203678. DOI: 10.1016/j.wear.2021.203678. 36. Hammouma C., Zeroug H. Enhanced frequency adaptation approaches for series resonant inverter control under workpiece permeability effect for induction hardening applications. Engineering Science and Technology, an International Journal , 2021. DOI: 10.1016/j.jestch.2021.05.010. 37. Skeeba V.Yu. Gibridnoe tekhnologicheskoe oborudovanie: povyshenie effektivnosti rannikh stadii proektirovaniya kompleksirovannykh metalloobrabatyvayushchikh stankov [Hybrid process equipment: improving the efficiency of the integrated metalworking machines initial designing]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2019, vol. 21, no. 2, pp. 62–83. DOI: 10.17212/1994-6309-2019-21.2-62-83. 38. Mühl F., Damon J., Dietrich S., Schulze V. Simulation of induction hardening: simulative sensitivity analysis with respect to material parameters and the surface layer state. Computational Materials Science , 2020, vol. 184, p. 109916. DOI: 10.1016/j.commatsci.2020.109916. 39. Skeeba V.Yu., PushninV.N., Erokhin I.A., Kornev D.Yu.Analiz napryazhenno-deformirovannogo sostoyaniya materiala pri vysokoenergeticheskom nagreve tokami vysokoi chastoty [Analysis of the stress-strain state of the material under high-energy heating by high frequency currents]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2014, no. 3 (64), pp. 90–102. 40. Zhong H., Wang Z., Gan J., Wang X., Yang Y., He J., Wei T.T., Qin X. Numerical simulation of martensitic transformation plasticity of 42CrMo steel based on spot continual induction hardening model. Surface and Coatings Technology , 2020, vol. 385, p. 125428. DOI: 10.1016/j.surfcoat.2020.125428. 41. Golovin G.F., Zimin N.V. Tekhnologiya termicheskoi obrabotki metallov s primeneniem induktsionnogo nagreva [Heat treatment technology of metals using induction heating]. Leningrad, Mashinostroenie Publ., 1990. 87 p. ISBN 5-217-00926-8. 42. Shepelyakovskii K.Z. Uprochnenie detalei mashin poverkhnostnoi zakalkoi pri induktsionnom nagreve [Hardening of machine parts by surface hardening during induction heating]. Moscow, Mashinostroenie Publ., 1972. 288 p. 43. Skeeba V.Y., Ivancivsky V.V., Martyushev N.V. Peculiarities of high-energy induction heating during surface hardening in hybrid processing conditions. Metals , 2021, vol. 11, iss. 9, p. 1354. DOI: 10.3390/met11091354. 44. Skeeba V.Yu., Ivancivsky V.V., Martyushev N.V., Lobanov D.V., Vakhrushev N.V., Zhigulev A.K. Numerical simulation of temperature field in steel under action of electron beam heating source. Key Engineering Materials , 2016, vol. 712, pp. 105–111. DOI: 10.4028 /www.scientific.net/KEM.712.105. 45. Ivancivsky V.V., Skeeba V.Yu., Bataev I.A., Lobanov D.V., Martyushev N.V., Sakha O.V., Khlebova I.V. The features of steel surface hardening with high energy heating by high frequency currents and shower cooling. IOP Conference Series: Materials Science and Engineering , 2016, vol. 156, p. 012025. DOI: 10.1088/1757- 899X/156/1/012025. 46. Fedotenok A.A. Kinematicheskaya struktura metallorezhushchikh stankov [Kinematic structure of machine tools]. Moscow, Mashinostroenie Publ., 1970. 408 p. 47. Ptitsyn S.V., Levitskii L.V. Strukturnyi analiz i sintez kinematiki metallorezhushchikh stankov [Structural analysis and kinematics synthesis of machine tools]. Kiev, UMK Publ., 1989. 70 p. 48. Ivakhnenko A.G.  Povyshenie effektivnosti rannikh stadii proektirovaniya metallorezhushchikh stankov na osnove strukturnogo sinteza formoobrazuyushchikh sistem. Diss. dokt. tekhn. nauk [Improving the efficiency of the early stages of designing machine tools based on the structural synthesis of shaping systems. Dr. eng. sci. diss.]. Moscow, 1998. 244 p. 49. Ivakhnenko A.G., Kuts V.V., Erenkov O.Y., Ivakhnenko E.O., Oleinik A.V. Effectiveness of structural- parametric synthesis of metal-cutting systems. Russian Engineering Research , 2017, vol. 37, no. 10, pp. 901–905. DOI: 10.3103/S1068798X17100112. 50. Nakaminami M., Tokuma T., Moriwaki M., Nakamoto К. Optimal structure design methodology for com - pound multiaxis machine tools–I – Analysis of requirements and specifications.  International Journal of Automation Technology , 2007, vol. 1, no. 2, pp. 78–86. DOI: 10.20965/ijat.2007.p0078.

RkJQdWJsaXNoZXIy MTk0ODM1