On the problem of tool destruction when obtaining fixed joints of thick-walled aluminum alloy blanks by friction welding with mixing

OBRABOTKAMETALLOV MATERIAL SCIENCE Том 23 № 3 2021 EQUIPMEN . INSTRUM TS Vol. No. 3 2021 References 1. Mishra R.S., Ma Z.Y. Friction stir welding and processing. Materials Science and Engineering: R: Reports , 2005, vol. 50, iss. 1, pp. 1–78. DOI: 10.1016/j.mser.2005.07.001. 2. Threadgill P.L., LeonardA.J., Shercliff H.R.,Withers P.J. Friction stir welding of aluminiumalloys. International Materials Reviews , 2009, vol. 54, iss. 2, pp. 49–93. DOI: 10.1179/174328009X411136. 3. Yu P., Wu C., Shi L. Analysis and characterization of dynamic recrystallization and grain structure evolution in friction stir welding of aluminum plates. Acta Materialia , 2021, vol. 207, p. 116692. DOI: 10.1016/j. actamat.2021.116692. 4. Eliseev A.A., Kalashnikova T.A., Filippov A.V., Kolubaev E.A. Material transfer by friction stir processing. Multiscale biomechanics and tribology of inorganic and organic systems: in memory of Professor Sergey Psakhie. Ed. by G.-P. Ostermeyer, V.L. Popov, E.V  Shilko., O.S. Vasiljeva. Cham, Springer International Publishing, 2021, pp. 169–188. DOI: 10.1007/978-3-030-60124-9_8. 5. Sahlot P., Singh A.K., Badheka V.J., Arora A. Friction stir welding of copper: numerical modeling and validation. Transactions of the Indian Institute of Metals , 2019, vol. 72, iss. 5, pp. 1339–1347. DOI: 10.1007/s12666- 019-01629-9. 6. Hwang Y.M., Fan P.L., Lin C.H. Experimental study on friction stir welding of copper metals. Journal of Materials Processing Technology , 2010, vol. 210, iss. 12, pp. 1667–1672. DOI: 10.1016/j.jmatprotec.2010.05.019. 7. RajKumar V., VenkateshKannan M., Sadeesh P., Arivazhagan N., Ramkumar K.D. Studies on effect of tool design and welding parameters on the friction stir welding of dissimilar aluminium alloys AA 5052 – AA 6061. Procedia Engineering , 2014, vol. 75, pp. 93–97. DOI: 10.1016/j.proeng.2013.11.019. 8. Tarasov S.Y., Rubtsov V.E., Kolubaev E.A. A proposed diffusion-controlled wear mechanism of alloy steel friction stir welding (FSW) tools used on an aluminum alloy. Wear , 2014, vol. 318, iss. 1, pp. 130–134. DOI: 10.1016/j. wear.2014.06.014. 9. Amirov A., Eliseev A., Kolubaev E., Filippov A., Rubtsov V. Wear of ZhS6U nickel superalloy tool in friction stir processing on commercially pure titanium. Metals , 2020, vol. 10, iss. 6, p. 799. DOI: 10.3390/met10060799. 10. Burford D., Widener C., Tweedy B. Advances in friction stir welding for aerospace applications. 6th AIAA Aviation Technology, Integration and Operations Conference (ATIO) , Reston, Virginia, American Institute of Aeronautics and Astronautics, 2006. DOI: 10.2514/6.2006-7730. 11. Longhurst W.R., Cox C.D., Gibson B.T., Cook G.E., Strauss A.M., Wilbur I.C., Osborne B.E. Development of friction stir welding technologies for in-space manufacturing. The International Journal of Advanced Manufacturing Technology , 2017, vol. 90, iss. 1, pp. 81–91. DOI: 10.1007/s00170-016-9362-1. 12. Aissani M., Gachi S., Boubenider F., Benkedda Y. Design and optimization of friction stir welding tool. Materials and Manufacturing Processes , 2010, vol. 25, iss. 11, pp. 1199–1205. DOI: 10.1080/10426910903536733. 13. Avettand-Fenoel M.-N., Taillard R. Heterogeneity of the nugget microstructure in a thick 2050 Al friction- stirred weld. Metallurgical and Materials Transactions: A , 2015, vol. 46, iss. 1, pp. 300–314. DOI: 10.1007/s11661- 014-2638-x. 14. ImamM., SunY., Fujii H.,Aoki Y., MAN., Tsutsumi S., Murakawa H. Friction stir welding of thick aluminium welds–challenges and perspectives. Friction Stir Welding and Processing IX . Ed. by Y. Hovanski, R. Mishra, Y. Sato, P. Upadhyay, D. Yan. Cham, Springer, 2017, pp. 119–124. DOI: 10.1007/978-3-319-52383-5_13. 15. Das B., Pal S., Bag S. Defect detection in friction stir welding process using signal information and fractal theory. Procedia Engineering , 2016, vol. 144, pp. 172–178. DOI: 10.1016/j.proeng.2016.05.021. 16. Koilraj M., Sundareswaran V., Vijayan S., Koteswara Rao S.R. Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083 – Optimization of process parameters using Taguchi technique. Materials and Design , 2012, vol. 42, pp. 1–7. DOI: 10.1016/j.matdes.2012.02.016. 17. Kah P., Rajan R., Martikainen J., Suoranta R. Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys. International Journal of Mechanical and Materials Engineering , 2015, vol. 10, iss. 1, p. 26. DOI: 10.1186/s40712-015-0053-8. 18. Al-Moussawi M., Smith A.J. Defects in friction stir welding of steel. Metallography, Microstructure, and Analysis , 2018, vol. 7, iss. 2, pp. 194–202. DOI: 10.1007/s13632-018-0438-1. 19. Wang G., Zhao Y., Hao Y. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing. Journal of Materials Science and Technology , 2018, vol. 34, iss. 1, pp. 73–91. DOI: 10.1016/j.jmst.2017.11.041.

RkJQdWJsaXNoZXIy MTk0ODM1