Hydrogen and its effect on the grinding of Ti-Ni powder
OBRABOTKAMETALLOV Vol. 23 No. 3 2021 111 MATERIAL SCIENCE 20. Abdulmenova E.V., Kulkov S.N. Mechanical high-energy treatment of TiNi powder and phase changes after electrochemical hydrogenation. International Journal of Hydrogen Energy , 2021, vol. 46, pp. 823–836. DOI: 10.1016/j.ijhydene.2020.09.171. 21. Dresvyannikov A.F., Kolpakov M.E. Kontrol’ i upravlenie kachestvom materialov [Control and management of the quality of materials]. Kazan, Kazan State Technological University Publ., 2007. 389 p. ISBN 978-5-7882- 0255-0. 22. Abdulmenova E.V., Kulkov S.N. Ti-Ni powder structure after mechanical activation and interaction with hydrogen. Russian Physics Journal , 2019, vol. 62, no. 8, pp. 1455–1460. DOI: 10.1007/s11182-019-01873-y. Translated from Izvestiya vysshikh uchebnykh zavedenii. Fizika , 2019, vol. 62, no. 8, pp. 137–142. DOI: 10.17223/0 0213411/62/8/137. 23. Tabular processor for X-ray diffractometry .Available at: http://slavic.me/rtp/index.htm (accessed 12.08.2021). 24. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch , Berlin, Heidelberg, Springer, 1912, pp. 387–409. DOI: 10.1007/978-3-662-33915-2_7. 25. Stuewe H-P., Shimomura Y. Lattice constants of the body-centered-cubic phases FeTi, CoTi, and NiTi. Zeitschrift fur Metallkunde , 1960, vol. 51, pp. 180–181. 26. Muller M.H., Knott H.W. Powder metallurgy and metal ceramics. Transactions of the Metallurgical Society of AIME 227 , 1963, vol. 674, pp. 674–677. 27. Laves F., WallbaumH.J. Die Kristallstruktur von Ni 3 Ti und Si 2 Ti. Zeitschriftfür Kristallographie – Crystalline Materials , 1939, vol. 101, pp. 78–93. DOI: 10.1524/zkri.1939.101.1.78. 28. Michal G.M., Sinclair R. The structure of TiNi martensite. Acta Crystallographica. Section B: Structural Science , 1981, vol. 37, pp. 1803–1807. DOI: 10.1107/S0567740881007292. 29. Buchner H., Gutjahr M., Beccu K., Saufferer H. Wasserstoff in intermetallischen phasen am beispiel des systems titan-nickel-wasserstoff. Zeitschrift Fur Metallkunde , 1972, vol. 63, pp. 497–500. 30. Luan B., Cui N., Zhao H., Liu H.K., Dou S.X. Mechanism of early capacity loss of Ti 2 Ni hydrogen-storage alloy electrode. Journal of Power Sources , 1995, vol. 55, pp. 101–106. DOI: 10.1016/0378-7753(94)02162-v. 31. Williamson G.K., Smallman R.E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philosophical Magazine , 1956, vol. 1 (1), pp. 34–46. DOI: 10.1080/14786435608238074. 32. Zakharov A.P., ed. Vzaimodeistvie vodoroda s metallami [Interaction of hydrogen with metals]. Moscow, Nauka Publ., 1987. 296 p. 33. Tomita M., Yokoyama K., Sakai J. Effects of potential, temperature and pH on hydrogen absorption and thermal desorption behaviors of Ni-Ti superelastic alloy in 0.9 % NaCl solution. Corrosion Science , 2008, vol. 50, pp. 2061–2069. DOI: 10.1016/j.corsci.2008.04.022. 34. Prochazka I., Cízek J., Havranek V., Anwand W. Defect studies of H implanted niobium. Journal of Alloys and Compounds , 2015, vol. 645, pp. S69–S71. DOI: 10.1016/j.jallcom.2015.01.197. Con fl icts of Interest The authors declare no con fl ict of interest. 2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1