Hydrogen and its effect on the grinding of Ti-Ni powder

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 111 MATERIAL SCIENCE 20. Abdulmenova E.V., Kulkov S.N. Mechanical high-energy treatment of TiNi powder and phase changes after electrochemical hydrogenation. International Journal of Hydrogen Energy , 2021, vol. 46, pp. 823–836. DOI: 10.1016/j.ijhydene.2020.09.171. 21. Dresvyannikov A.F., Kolpakov M.E. Kontrol’ i upravlenie kachestvom materialov [Control and management of the quality of materials]. Kazan, Kazan State Technological University Publ., 2007. 389 p. ISBN 978-5-7882- 0255-0. 22. Abdulmenova E.V., Kulkov S.N. Ti-Ni powder structure after mechanical activation and interaction with hydrogen. Russian Physics Journal , 2019, vol. 62, no. 8, pp. 1455–1460. DOI: 10.1007/s11182-019-01873-y. Translated from Izvestiya vysshikh uchebnykh zavedenii. Fizika , 2019, vol. 62, no. 8, pp. 137–142. DOI: 10.17223/0 0213411/62/8/137. 23. Tabular processor for X-ray diffractometry .Available at: http://slavic.me/rtp/index.htm (accessed 12.08.2021). 24. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch , Berlin, Heidelberg, Springer, 1912, pp. 387–409. DOI: 10.1007/978-3-662-33915-2_7. 25. Stuewe H-P., Shimomura Y. Lattice constants of the body-centered-cubic phases FeTi, CoTi, and NiTi. Zeitschrift fur Metallkunde , 1960, vol. 51, pp. 180–181. 26. Muller M.H., Knott H.W. Powder metallurgy and metal ceramics. Transactions of the Metallurgical Society of AIME 227 , 1963, vol. 674, pp. 674–677. 27. Laves F., WallbaumH.J. Die Kristallstruktur von Ni 3 Ti und Si 2 Ti. Zeitschriftfür Kristallographie – Crystalline Materials , 1939, vol. 101, pp. 78–93. DOI: 10.1524/zkri.1939.101.1.78. 28. Michal G.M., Sinclair R. The structure of TiNi martensite. Acta Crystallographica. Section B: Structural Science , 1981, vol. 37, pp. 1803–1807. DOI: 10.1107/S0567740881007292. 29. Buchner H., Gutjahr M., Beccu K., Saufferer H. Wasserstoff in intermetallischen phasen am beispiel des systems titan-nickel-wasserstoff. Zeitschrift Fur Metallkunde , 1972, vol. 63, pp. 497–500. 30. Luan B., Cui N., Zhao H., Liu H.K., Dou S.X. Mechanism of early capacity loss of Ti 2 Ni hydrogen-storage alloy electrode. Journal of Power Sources , 1995, vol. 55, pp. 101–106. DOI: 10.1016/0378-7753(94)02162-v. 31. Williamson G.K., Smallman R.E. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philosophical Magazine , 1956, vol. 1 (1), pp. 34–46. DOI: 10.1080/14786435608238074. 32. Zakharov A.P., ed. Vzaimodeistvie vodoroda s metallami [Interaction of hydrogen with metals]. Moscow, Nauka Publ., 1987. 296 p. 33. Tomita M., Yokoyama K., Sakai J. Effects of potential, temperature and pH on hydrogen absorption and thermal desorption behaviors of Ni-Ti superelastic alloy in 0.9 % NaCl solution. Corrosion Science , 2008, vol. 50, pp. 2061–2069. DOI: 10.1016/j.corsci.2008.04.022. 34. Prochazka I., Cízek J., Havranek V., Anwand W. Defect studies of H implanted niobium. Journal of Alloys and Compounds , 2015, vol. 645, pp. S69–S71. DOI: 10.1016/j.jallcom.2015.01.197. Con fl icts of Interest The authors declare no con fl ict of interest.  2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1