Hydrogen and its effect on the grinding of Ti-Ni powder

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 23 No. 3 2021 6. Khadzhieva O.G., Illarionov A.G., Popov A.A., Grib S.V. Effect of hydrogen on the structure of quenched orthorhombic titanium aluminide-based alloy and phase transformations during subsequent heating. The Physics of Metals and Metallography , 2013, vol. 114, no. 6, pp. 577–582. DOI: 10.1134/S0031918X13060070. Translated from Fizika metallov i metallovedenie , 2013, vol. 114, no. 6, pp. 577–582. DOI: 10.7868/S0015323013060077. 7. Panin V.E., Egorushkin V.E., Moiseenko D.D., Maksimov P.V., Kulkov S.N., Panin S.V. Functional role of polycrystal grain boundaries and interfaces in micromechanics of metal ceramic composites under loading. Computational Materials Science , 2016, vol. 116, pp. 74–81. DOI: 10.1016/j.commatsci.2015.10. 8. Otsuka K., Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Progress in Materials Science , 2005, vol. 50 (5), pp. 511–678. DOI: 10.1016/j.pmatsci.2004.10.001. 9. El-Eskandarany M.S. Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders. Journal of Alloys and Compounds , 2000, vol. 305, pp. 225–238. DOI: 10.1016/ s0925-8388(00)00692-7. 10. Nobuki T., Crivello J-C., Cuevas F. Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties. International Journal of Hydrogen Energy , 2019, vol. 44, pp. 10770–10776. DOI: 10.1016/j. ijhydene.2019.02.203. 11. Kumar A., Shashikala K., Banerjee S., Nuwad J., Das P., Pillai C.G.S. Effect of cycling on hydrogen storage properties of Ti 2 CrV alloy. International Journal of Hydrogen Energy , 2012, vol. 37, pp. 3677–3682. DOI: 10.1016/j. ijhydene.2011.04.135. 12. Bratanich T.I., Get’man O.I., Permyakova T.V., Skorokhod V.V. Destructive hydrogenation as method for improvement of TiNi exploitation properties. International Journal of Hydrogen Energy , 2007, vol. 32, pp. 3941– 3946. DOI: 10.1016/j.ijhydene.2007.04.033. 13. Balcerzak M., Jakubowicz J., Kachlicki T., Jurczyk M. Hydrogenation properties of nanostructured Ti 2 Ni- based alloys and nanocomposites. Journal of Power Sources , 2015, vol. 280, pp. 435–445. DOI: 10.1016/j. jpowsour.2015.01.135. 14. Ivasishin O.M., Eylon D., Bondarchuk V.I., Savvakin D.G. Diffusion during powder metallurgy synthesis of titanium alloys. Defect Diffusion Forum , 2008, vol. 277, pp. 177–185. DOI: 10.4028 /www.scientific.net/ddf.277.177. 15. Ivasishin O.M., Savvakin D.G., Gumenyak M.M., Bondarchuk O.B. Role of surface contamination in titanium PM. Key Engineering Materials , 2012, vol. 520, pp. 121–132. DOI: 10.4028 /www.scientific.net/kem.520.121. 16. Ivasishin O.M., Moxson V.S. Low-cost titanium hydride powder metallurgy. Titanium Powder Metallurgy . Amsterdam, Boston, Elsevier, 2015, pp. 117–148. DOI: 10.1016/b978-0-12-800054-0.00008-3. 17. Sun P., Fang Z.Z., Koopman M. A comparison of hydrogen sintering and phase transformation (HSPT) processing with vacuum sintering of CP-Ti. Advanced Engineering Materials , 2013, vol. 15, pp. 1007–1013. DOI: 10.1002/adem.201300017. 18. Paramore J.D., Fang Z.Z., Sun P. Hydrogen sintering of titanium and its alloys. Titanium Powder Metallurgy . Amsterdam, Boston, Elsevier, 2015, pp. 163–182. DOI: 10.1016/b978-0-12-800054-0.00010-1. 19. Baimakov Yu.V., Zhurin A.I. Elektroliz v gidrometallurgii [Electrolysis in hydrometallurgy]. Moscow, Metallurgizdat Publ., 1962. 617 p. 20. Abdulmenova E.V., Kulkov S.N. Mechanical high-energy treatment of TiNi powder and phase changes after electrochemical hydrogenation. International Journal of Hydrogen Energy , 2021, vol. 46, pp. 823–836. DOI: 10.1016/j.ijhydene.2020.09.171. 21. Dresvyannikov A.F., Kolpakov M.E. Kontrol’ i upravlenie kachestvom materialov [Control and management of the quality of materials]. Kazan, Kazan State Technological University Publ., 2007. 389 p. ISBN 978-5-7882- 0255-0. 22. Abdulmenova E.V., Kulkov S.N. Ti-Ni powder structure after mechanical activation and interaction with hydrogen. Russian Physics Journal , 2019, vol. 62, no. 8, pp. 1455–1460. DOI: 10.1007/s11182-019-01873-y. Translated from Izvestiya vysshikh uchebnykh zavedenii. Fizika , 2019, vol. 62, no. 8, pp. 137–142. DOI: 10.17223/0 0213411/62/8/137. 23. Tabular processor for X-ray diffractometry .Available at: http://slavic.me/rtp/index.htm (accessed 12.08.2021). 24. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchemie Ein Lehrbuch , Berlin, Heidelberg, Springer, 1912, pp. 387–409. DOI: 10.1007/978-3-662-33915-2_7. 25. Stuewe H-P., Shimomura Y. Lattice constants of the body-centered-cubic phases FeTi, CoTi, and NiTi. Zeitschrift fur Metallkunde , 1960, vol. 51, pp. 180–181. 26. Muller M.H., Knott H.W. Powder metallurgy and metal ceramics. Transactions of the Metallurgical Society of AIME 227 , 1963, vol. 674, pp. 674–677.

RkJQdWJsaXNoZXIy MTk0ODM1