Low energy mechanical treatment of non-stoichiometric titanium carbide powder

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 119 MATERIAL SCIENCE gas atmospheres // Metallurgical and Materials Transactions: B. – 2009. – Vol. 40. – P. 62–69. – DOI: 10.1007/s11663-008-9205-z. 15. Woo Y., Kang H., Kim D.J. Formation of TiC particle during carbothermal reduction of TiO2 // Journal of the European Ceramic Society. – 2007. – Vol. 27, iss. 2–3. – P. 719–722. – DOI: 10.1016/j. jeurceramsoc.2006.04.090. 16. Grove D.E., Gupta U., Castleman A.W. Effect of carbon concentration on changing the morphology of titanium carbide nanoparticles from cubic to cubooctahedron // ACS Nano. – 2010. – Vol. 4. – P. 49– 54. – DOI: 10.1021/nn901041. 17. Preiss H., Berger L.M., Schultze D. Studies on the carbothermal preparation of titanium carbide from different gel precursors // Journal of the European Ceramic Society. – 1999. – Vol. 19, iss. 2. – P. 195–206. – DOI: 10.1016/S0955-2219(98)00190-3. 18. Preparation of titanium carbide powders by sol– gel and microwave carbothermal reduction methods at low temperature / H. Zhang, F. Li, Q. Jia, G. Ye // Journal of Sol-Gel Science and Technology. – 2008. – Vol. 46. – P. 217–222. – DOI: 10.1007/s10971-008-1697-0. 19. A simple method of synthesis and surface puri fi cation of titanium carbide powder / S. Dyjak, M. Norek, M. Pola ń ski, S. Cudzi ł o, J. Bystrzycki // International Journal of Refractory Metals and Hard Materials. – 2013. –Vol. 38. – P. 87–91. – DOI: 10.1016/j. ijrmhm.2013.01.004. 20. Fu Z., Koc R. Pressureless sintering of submicron titanium carbide powders // Ceramics International. – 2017. – Vol. 43, iss. 18. – P. 17233–17237. – DOI: 10.1016/j.ceramint.2017.09.050. 21. T ong L., Reddy R.G. Synthesis of titanium carbide nano-powders by thermal plasma // Scripta Materialia. – 2005. – Vol. 52, iss. 12. – P. 1253–1258. – DOI: 10.1016/j.scriptamat.2005.02.033. 22. Preparation of titanium carbide powders by carbothermal reduction of titania/charcoal at vacuum condition / W. Sen, H. Sun, B. Yang, B. Xu, W. Ma, D. Liu, Y. Dai // International Journal of Refractory Metals and Hard Materials. – 2010. – Vol. 28, iss. 5. – P. 628–632. – DOI: 10.1016/j.ijrmhm.2010.06.005. 23. Фазовые превращения беспорядок - порядок и электросопротивление нестехиометрического карби - да титана / В . Н . Липатников , А . Коттар , Л . В . Зуева , А . И . Гусев // Физика твердого тела . – 1998. – T. 40, № 7. – C. 1332–1340. 24. Кипарисов С . С ., ЛевинскийЮ . В ., Петров А . П . Карбид титана : получение , свойства , применение . – М .: Металлургия , 1987. – 215 с . 25. Kurlov A.S., Gusev A.I. High-energy milling of nonstoichiometric carbides: effect of nonstoichiometry on particle size of nanopowders // Journal of Alloys and Compounds. – 2014. – Vol. 582. – P. 108–118. – DOI: 10.1016/j.jallcom.2013.08.008. 26. Горбачева Т . Б . Рентгенография твердых спла - вов . – М .: Металлургия , 1985. – 205 с . 27. Effect of mechanical treatment on properties of Si-Al-O zeolites / A.Y. Buzimov, W. Eckl, L.A. Gömze, I. Kocserha, E. Kurovics, A.S. Kulkov, S.N. Kulkov // Épít ő anyag – Journal of Silicate Based and Composite Materials. – 2018. – Vol. 70, iss. 1. – P. 23–26. – DOI: 10.14382/epitoanyag-jsbcm.2018.5. 28. Peculiarities of the formation of high-defect states in mechanocomposites and powders of niobium and aluminum under severe deformation in planetary ball mills / I.A. Ditenberg, A.N. Tyumentsev, K.I. Denisov, M.A. Korchagin // Physical Mesomechanics. – 2013. – Vol. 16. –P. 84–92. –DOI: 10.1134/S1029959913010098. 29. Абдульменова Е . В ., Кульков С . Н . Влияние ме - ханической активации порошка ВК -8 на свойства спеченных твердых сплавов // Обработка металлов ( технология , оборудование , инструменты ). – 2021. – Т . 23, № 1. – С . 68–78. – DOI: 10.17212/1994-6309- 2021-23.1-68-78. 30. Boldyrev V.V. Mechanochemistry and mechanical activation of solids // Russian Chemical Reviews. – 2006. – Vol. 75, iss. 3. – P. 177–189. – DOI: 10.1070/ RC2006v075n03ABEH001205. 31. Urakaev F.K., Boldyrev V.V. Mechanism and kinetics of mechanochemical processes in comminuting devices // Powder Technology. – 2000. – Vol. 107, iss. 1–2. – P. 93–107. – DOI: 10.1016/s0032- 5910(99)00175-8. 32. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen // Kolloidchemie Ein Lehrbuch. – Berlin; Heidelberg: Springer, 1912. – P. 387–409. – DOI: 10.1007/978-3- 662-33915-2_7. 33. Stokes A.R., Wilson A.J.C. The diffraction of X-rays by distorted crystal aggregates // Proceedings of the Physical Society. – 1944. – Vol. 56 (3). – P. 174– 181. – DOI: 10.1088/0959-5309/56/3/303. 34. Салтыков С . А . Стереометрическая металло - графия . – М .: Металлургия , 1970. – 376 с . 35.High-energyball-millingcombinedwithannealing of TiC powders and its in fl uence on the microstructure and mechanical properties of the TiC-based cermets / H. Xiong, Z. Li, X. Gan, L. Chai, K. Zhou // Materials Science and Engineering: A. – 2017. – Vol. 694. – P. 33– 40. – DOI: 10.1016/j.msea.2017.03.092. 36. Xiong H., Li Z., Zhou K. TiC whisker reinforced ultra- fi ne TiC-based cermets: microstructure and mechanical properties // Ceramics International. –

RkJQdWJsaXNoZXIy MTk0ODM1