Low energy mechanical treatment of non-stoichiometric titanium carbide powder

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 122 MATERIAL SCIENCE References 1. Ortner H.M., Ettmayer P., Kolaska H. The history of the technological progress of hardmetals, Internationa. Journal of Refractory Metals and Hard Materials , 2014, vol. 44, pp. 148–159. DOI: 10.1016/j.ijrmhm.2013.07.014. 2. Li Y.-L., Takamasa I. Incongruent vaporization of titanium carbide in thermal plasma. Materials Science and Engineering: A , 2003, vol. 345, iss. 1–2, pp. 301–308. DOI: 10.1016/S0921-5093(02)00506-3. 3. Lee D.W., Alexandrovskii S.V., Kim B.K. Novel synthesis of substoichiometric ultra fi ne titanium carbide. Materials Letters , 2004, vol. 58, iss. 9, pp. 1471–1474. DOI: 10.1016/j.matlet.2003.10.011. 4. Yasuo G., Kensaku F., Mikio K., Yutaka O., Masanobu N., Kensuke A., Deki S. Synthesis of titanium carbide from a composite of TiO 2 , nanoparticles methyl cellulose by carbothermal reduction. Materials Research Bulletin , 2001, vol. 36, iss. 13–14, pp. 2263–2275. DOI: 10.1016/S0025-5408(01)00713-9. 5. Huber P., Manova D., Mandl S., Rauschenbach B. Formation of TiN, TiC and TiCN by metal plasma immersion ion implantation and deposition. Surface and Coatings Technology , 2003, vol. 174–175, pp. 1243–1247. DOI: 10.1016/S0257-8972(03)00458-4. 6. Lengauer W. Transition metal carbides, nitrides, and carbonitrides. Handbook of Ceramic Hard Materials . Ed. by R. Riedel. Weinheim, Wiley-VCH Verlag GmbH, 2000, ch. 7, pp. 238–241. DOI: 10.1002 / 9783527618217.ch7. 7. Jones M.I., McColl I.R., Grant D.M., Parker K.G., Parker T.L. Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. Journal of Biomedical Materials Research , 2000, vol. 52, iss. 2, pp. 413–421. DOI: 10.1002/1097-4636(200011)52 :23.0.CO ;2-U. 8. Bairikov I.M., Amosov A.P., Tyumina O.V., et al. Eksperimental’naya otsenka biosovmestimosti novogo SVS- materiala na osnove karbida titana so skvoznoi poristost’yu na kul’turakh mezenkhimal’nykh stvolovykh kletok kostnogo mozga cheloveka [Experimental assessment of biocompatibility of a new SHS-material based on titanium carbide with through porosity on cultures of human bonemarrowmesenchymal stemcells]. Voprosy chelyustnolitsevoi, plasticheskoi khirurgii, implantologii i klinicheskoi stomatologii = Maxillofacial, plastic surgery, implantology and clinical dentistry issues , 2011, no. 1–2, pp. 23–27. 9. Moriwaki H., Kitajima S., Shirai K., Kiguchi K., Yamada O. Application of the powder of porous titanium carbide ceramics to a reusable adsorbent for environmental pollutants. Journal of Hazardous Materials , 2011, vol. 185, iss. 2–3, pp. 725–731. DOI: 10.1016/j.jhazmat.2010.09.079. 10. Youshin G., Dash R., Jagiello J., Fisher J.E., Gogotsi Y. Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Advanced Functional Materials , 2006, vol. 16, pp. 2288–2293. DOI: 10.1002/ adfm.200500830. 11. Magnalia F., Anselmi-Tamburini U., Deidda C., Delogu F., Cocco G., Munir Z.A. Role of mechanical activation in SHS synthesis of TiC. Journal of Materials Science , 2004, vol. 39, pp. 5227–5230. DOI: 10.1023/B:J MSC.0000039215.28545.2f. 12. Cochepina B., Gauthiera V., Vrelb D., Dubois S. Crystal growth of TiC grains during SHS reactions. Journal of Crystal Growth , 2007, vol. 304, pp. 481–486. DOI: 10.1016/j.jcrysgro.2007.02.018. 13. Tong L., Reddy R.G. Synthesis of titanium carbide nano-powders by thermal plasma. Scripta Materialia , 2005, vol. 52, iss. 12, pp. 1253–1258. DOI: 10.1016/j.scriptamat.2005.02.033. 14. Dewan M.A.R., Zhang G., Ostrovski O. Carbothermal reduction of titania in different gas atmospheres. Metallurgical and Materials Transactions: B , 2009, vol. 40, pp. 62–69. DOI: 10.1007/s11663-008-9205-z. 15. Woo Y., Kang H., Kim D.J. Formation of TiC particle during carbothermal reduction of TiO 2 . Journal of the European Ceramic Society , 2007, vol. 27, iss. 2–3, pp. 719–722. DOI: 10.1016/j.jeurceramsoc.2006.04.090. 16. Grove D.E., Gupta U., Castleman A.W. Effect of carbon concentration on changing the morphology of titanium carbide nanoparticles from cubic to cuboctahedron. ACS Nano , 2010, vol. 4, pp. 49–54. DOI: 10.1021/nn901041. 17. Preiss H., Berger L.M., Schultze D. Studies on the carbothermal preparation of titanium carbide from different gel precursors. Journal of the European Ceramic Society , 1999, vol. 19, iss. 2, pp. 195–206. DOI: 10.1016/S0955- 2219(98)00190-3. 18. Zhang H., Li F., Jia Q., Ye G. Preparation of titanium carbide powders by sol–gel and microwave carbothermal reduction methods at low temperature. Journal of Sol-Gel Science and Technology , 2008, vol. 46, pp. 217–222. DOI: 10.1007/s10971-008-1697-0. 19. Dyjak S., Norek M., Pola ń ski M., Cudzi ł o S., Bystrzycki J. A simple method of synthesis and surface puri fi cation of titanium carbide powder. International Journal of Refractory Metals and Hard Materials , 2013, vol. 38, pp. 87–91. DOI: 10.1016/j.ijrmhm.2013.01.004. 20. Fu Z., Koc R. Pressureless sintering of submicron titanium carbide powders. Ceramics International , 2017, vol. 43, iss. 18, pp. 17233–17237. DOI: 10.1016/j.ceramint.2017.09.050. 21. Tong L., Reddy R.G. Synthesis of titanium carbide nano-powders by thermal plasma. Scripta Materialia , 2005, vol. 52, iss. 12, pp. 1253–1258. DOI: 10.1016/j.scriptamat.2005.02.033.

RkJQdWJsaXNoZXIy MTk0ODM1