Influence of the chemical composition of the matrix on the structure and properties of monolithic SHS composites

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 23 No. 3 2021 5. Merzhanov A.G. Samorasprostranyayushchiisya vysokotemperaturnyi sintez [Self-propagating high-tempera- ture synthesis]. Fizicheskaya khimiya. Sovremennye problemy [Physical chemistry. Contemporary problems]. Ed. by Ya.M. Kolotyrkin. Moscow, Khimiya Publ., 1983, pp. 6–44. 6. Levashov Е.А., Vakaev P.V., Zamulaeva E.I., Kudryashov A.E., Pogozhev Yu.S., Shtansky D.V., Voevo - din A.A., Sanz A. Nanoparticle dispersion strengthened coatings and electrode materials for electrospark deposition. Thin Solid Films , 2006, vol. 515, iss. 3, pp. 1161–1165. DOI: 10.1016/j.tsf.2006.07.140. 7. Zhevtun I.G., Gordienko P.S., Yarusova S.B., Golub A.V., Kul’chin Y.N., Subbotin E.P. Effects of doping of composite Ti–TiC coatings with transition and valve metals on their structure and mechanical properties. The Physics of Metals and Metallography , 2019, vol. 120, no. 1, pp. 25–31. DOI: 10.1134/S0031918X18100150. Translated from Fizika metallov i metallovedenie , 2019, vol. 120, no. 1, pp. 27–33. DOI: 10.1134/S0015323018100157. 8. Shchukin A.S., Sytschev A.E. Peculiarities of a NiAl/Mo transition zone formed during self-propagating high- temperature synthesis. The Physics of Metals and Metallography , 2019, vol. 120, no. 9, pp. 848–852. DOI: 10.1134/ S0031918X19090138. Translated from Fizika metallov i metallovedenie , 2019, vol. 120, no. 9, pp. 925–930. DOI: 10.1134/S0015323019090134. 9. Zhang X., Liu N., Rong C., Zhou J. Microstructure and mechanical properties of TiC-TiN-Zr-WC-Ni-Co cer- mets. Ceramics International , 2009, vol. 35, iss. 3, pp. 1187–1193. DOI: 10.1016/j.ceramint.2008.06.005. 10. Heiligers Ch., Neethling J.H. Crystal structure of the binder phase in a model HfC-TiC-Ni material. Journal of Alloys and Compounds , 2008, vol. 453, iss. 1–2, pp. 222–228. DOI: 10.1016/j.jallcom.2007.05.094. 11. Zhang X., Liu N. Effects of ZrC on microstructure, mechanical properties and thermal shock resistance of TiC-ZrC-Co-Ni cermets. Materials Science and Engineering: A , 2013, vol. 561, pp. 270–276. DOI: 10.1016 / j.msea.2012.11.003. 12. Kwon W.T., Park J.S., Kang S. Effect of group IV elements on the cutting characteristics of Ti(C,N) cer- met tools and reliability analysis. Journal of Materials Processing Technology , 2005, vol. 166, iss. 1, pp. 9–14. DOI: 10.1016/j. jmatprotec.2004.06.009. 13. Kim Y.-K., Shim J.-H., Cho Y.W., Yang H.-S., Park J.-K. Mechanochemical synthesis of nanocomposite powder for ultrafine (Ti,Mo)C-Ni cermet without core-rim structure. International Journal of Refractory Metals and Hard Materials , 2004, vol. 22, iss. 4–5, pp. 193–196. DOI: 10.1016/j.ijrmhm.2004.06.004. 14. LaSalvia J.C., Kim D.K., Meyers M.A. Effect of Mo on microstructure and mechanical properties of TiC–Ni- based cermets produced by combustion synthesis – impact forging technique. Materials Science and Engineering: A , 1996, vol. 206, iss. 1, pp. 71–80. DOI: 10.1016/0921-5093(95)09994-8. 15. Zhang C., Xiong W., Yang Q., Yao Z., Chen S., Chen X. Effect of Mo addition on microstructure and me - chanical properties of (Ti,W)C solid solution based cermets. International Journal of Refractory Metals and Hard Materials , 2014, vol. 43, iss. 4–5, pp. 77–82. DOI: 10.1016/j.ijrmhm.2013.11.004. 16. Ettmayer P. Hardmetals and cermets. Annual Review of Materials Research , 1989, vol. 19, pp. 145–164. DOI: 10.1146/annurev.ms.19.080189.001045. 17. Khusid B.M., Merzhanov A.G. Strukturnye prevrashcheniya pri bezgazovom gorenii geterogennykh sistem s plavyashchimsya metallicheskim reagentom [Structural transformations in the absence of gas combustion of hetero- geneous systems with a melting metal reagent]. Doklady Akademii nauk SSSR , 1988, vol. 298, no. 2, pp. 414–417. (In Russian). 18. Holt J.B, Munir Z.A. Combustion synthesis of titanium carbide – theory and experiment. Journal of Materi- als Science , 1986, vol. 21, pp. 251–259. DOI: 10.1007 / BF01144729ID. 19. Levashov E.A., Vyushkov B.V., Egorychev K.N., Borovinskaya I.P. Technological aspects of manufacturing new synthetic titanium and molybdenum carbide-based tool materials. International Journal of SHS , 1996, vol. 5, iss. 3, p. 293. 20. Levashov E.A., Kurbatkina V.V. Regularities of composite materials with micrograded grain structure forma- tion. Materials Science Forum , 2004, vol. 492–493, pp. 615–620. DOI: 10.4028 /www.scientific.net/MSF.492-493. 21. Levashov E.A., Malochkin O.V., Kudryashov A.E., Gammel F., Suchentrunk R. Effects of nanocrystalline powders additions on the characteristics of combustion process, phase and structure-formation, and properties of SHS alloys on titanium carbide base. Journal of Materials Synthesis and Processing , 2002, vol. 10, iss. 5, pp. 231– 236. DOI: 10.1023/A: 1023033907477. 22. Nowotny H., Rogl P., Schuster J.C. Structural chemistry of complex carbides and related compounds. Journal of Solid State Chemistry , 1982, vol. 44, iss. 1, pp. 126–133. DOI: 10.1016/0022-4596(82)90409-1. 23. Nikolin Yu.V., Zyatkevich V.V., Blinkov O.G. Mnogosloynaya iznosostoykaya plastina [Multi-layer wear plate]. Patent RF No. 2014132582. Priority from 08/07/2014 to 08/07/2024.

RkJQdWJsaXNoZXIy MTk0ODM1