Kinetic equations of creep and damage for description of materials with non-monotonic dependence of fracture strain on stress

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 23 No. 3 2021 in both cases is practically the same for stresses at which this minimum is reached. If the stress is less than the minimum value, then the accumulation of damage is less in the kinematic deformation mode; if the stress is greater, the accumulation of damage is less in the static mode. The obtained conclusions about the advantages of deformation methods should be taken into account when choosing the modes of shaping structures made of alloys with a non-monotonic dependence of the fracture strain on stress, as well as when evaluating it for long-term strength during operation. References 1. Volegov P.S., Gribov D.S., Trusov P.V. Damage and fracture: classical continuum theories. Physical Mesomechanics , 2017, vol. 20, pp. 157–173. DOI: 10.1134/S1029959917020060. Translated from Fizicheskaya Mezomekhanika , 2015, vol. 18, no. 4, pp. 68–87. 2. Lokoshchenko A.M. Polzuchest’ i dlitel’naya prochnost’ metallov [Creep and long-term strength of metals]. Moscow, Fizmatlit Publ., 2016. 504 p. ISBN 978-5-9221-1645-9. 3. Meng Q., Wang Z. Creep damage models and their applications for crack growth analysis in pipes: A review. Engineering Fracture Mechanics , 2019, vol. 205, pp. 547–576. DOI: 10.1016/j.engfracmech.2015.09.055. 4. Skrzypek J.J., GanczarskiA.W. Modeling of material damage and failure of structures: theory and applications . Berlin, Springer, 1999. 326 p. ISBN 3-540-63725-7. 5. Kachanov L.M. Vremya razrusheniya v usloviyakh polzuchesti [Time of destruction under creep conditions]. Problemy mekhaniki sploshnoi sredy [Problems of Continuum Mechanics]. Moscow, 1961, pp. 186–201. 6. Rabotnov Yu.N. O mekhanizme dlitel’nogo razrusheniya [On the mechanism of long-term destruction]. Voprosy prochnosti materialov i konstruktsii [Questions of strength of materials and structures]. Moscow, AN SSSR Publ., 1959, pp. 5–7. 7. Kowalewski Z.L., Hayhurst D.R., Dyson B.F. Mecha nisms-based creep constitutive equations for an aluminium alloy. Journal of Strain Analysis for Engineering Design, 1994, vol. 29, no. 4, pp. 309–316. DOI: 10.1243/03093247V294309. 8. Othman A.M., Hayhurst D.R., Dyson B.F. Skeletal point stresses in circum ferentially notched tension bars undergoing tertiary c reep modelled with physically base d constitutive equations. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1993, vol. 441, no. 1912, pp. 343–358. Available at: https:// www.jstor.org/stable/52272 (accessed 15.08.2021). 9. Naumenko K, Kostenko  Y. Structural analysis of a power pl ant component using a stress-range-depen- dent creep-damage constitutive model. Materials Science and Engineering: A. 2009, vol. 510–511, pp. 169–174. DOI: 10.1016/j.msea.2008.04.096. 10. Stewart C.M., Gordon A.P., Ma Y.W., Neu R.W. An anisotropic tertia ry creep damage constitutive mod- el for anisotropic materials. International Journal of Pressure Vessels and Piping, 20 11, vol. 88, pp. 356–364. DOI: 10.1016/j.ijpvp.2011.06.010. 11. Rabotnov Yu.N. Polzuchest’ elementov konstruktsii [Cree p problems in structure members]. Moscow, Nauka Publ., 1966. 752 p.). 12. Sosnin O.V., Gorev B.V., Nikitenko A.F. Energeticheskii variant teorii polzuchesti [Energy version of creep theory]. Novosibirsk, Lavrentyev Institute of Hydrodynamics, 1986. 96 p. 13. Gorev B.V. , Klopotov I.D. Description of the creep process a nd long strength by equations with one sca- lar damage parameter. Journal of Appl ied Mechanics and Technical Physics, 1994, vo l. 35, iss. 5, pp. 726–734. DOI: 10.1007/BF02369552. Translated from Prikladnaya mekhanika i tekhnicheskaya fi zika, 1994, vol. 35, iss. 5. pp. 92–102. 14. Bormotin K.S., Oleinikov A.I. Variational principles and optimal solutions of the inverse problems of creep bending of plates. Journal of Applied Mechanics and Technical Physics , 2012, vol. 53, iss. 5, pp. 751–760. DOI: 10.1134/S0021894412050148. Translated from Prikladnaya mekhanika i tekhnicheskaya fizika , 2012, vol. 53, iss. 5, pp. 136–146. 15. Bormotin K.S., VinA. Metod dinamicheskogo programmirovaniya v zadachakh optimal’nogo deformirovani- ya paneli v rezhime polzuchesti [Amethod of dynamic programming in the problems of optimal panel deformation in the creep mode]. Vychislitel’nye metody i programmirovanie = Numerical Methods and Programming , 2018, vol. 19, iss. 4, pp. 470–478. DOI: 10.26089/NumMet.v19r442.

RkJQdWJsaXNoZXIy MTk0ODM1