Full-factor matrix model of accuracy of dimensions performed on CNC multipurpose machines

OBRABOTKAMETALLOV Vol. 23 No. 4 2021 19 TECHNOLOGY 3. Trojanowska J., Kolinski A., Galusik D., Varela M.L.R., Machado J. A methodology of improvement of manufacturing productivity through increasing operational ef fi ciency of the production process. Advances in Manu- facturing. Lecture Notes in Mechanical Engineering . Cham, Springer, 2019, pp. 23–32. DOI: 10.1007/978-3- 319-68619-6_3 . 4. Usubamatov R., Zain Z.M., Sin T.C., Kapaeva S. Optimization of multi-tool machining processes with simul- taneous action. The International Journal of Advanced Manufacturing Technology , 2016, vol. 82, pp. 1227–1239. DOI: 10.1007/s00170-015-6920-x . 5. Yusubov N.D. Matrix models of the accuracy in multitool two-support setup. Russian Engineering Research , 2009, vol. 29, pp. 268–271. DOI: 10.3103/S1068798X09030125 . 6. Koshin А . А ., Yusubov N.D. Elementy matrichnoi teorii tochnosti mnogoinstrumentnoi obrabotki v prostrans- tvennykh naladkakh [Elements of matrix theory of multitool processing accuracy in three-dimensional setups]. Vest- nik mashinostroeniya = Russian Engineering Research , 2013, no. 9, pp. 13–17. (In Russian). 7. Hirsch A. Werkzeugmaschinen: Anforderungen, Auslegung, Ausführungsbeispiele . 3. Au fl . Wiesbaden, Spring- er Vieweg, 2016. 441 p. ISBN 978-3-658-14249-0. DOI: 10.1007/978-3-658-14249-0. 8. Antimonov A.M. Osnovy tekhnologii mashinnostroeniya [Fundamentals of mechanical engineering technol- ogy]. Ekaterinburg, Ural University Publ., 2017. 176 p. ISBN 978-5-7996-2132-2. 9. Bagrov B.M., KozlovA.M. Mnogotselevye stanki [Multipurpose machines]. Lipetsk, LSTU Publ., 2004. 193 p. ISBN 5-88247-183-4. 10. Koshin A.A. Obrabotka na tokarnykh stankakh: naladka, rezhimy rezaniya. Spravochnik [Processing on lathes: adjustment, cutting conditions. Handbook]. Chelyabinsk, Siti-Print, 2012. 744 p. 11. Yusubov N.D., Abbasova H.M., Khankishiyev İ .A. Entwicklung einer Projektierungstheorie für die Mehr- werkzeugbearbeitung mit den Möglichkeiten der modernen CNC-Werkzeugmaschinen. Forschung im Ingenieurwe- sen , 2021, vol. 85, pp. 661–678. DOI: 10.1007/s10010-021-00478-7 . 12. Brecher C., Epple A., Neues S., Fey M. Optimal process parameters for parallel turning operations on shared cutting surfaces. International Journal of Machine Tools and Manufacture , 2015, vol. 95, pp. 13–19. DOI: 10.1016/j. ijmachtools.2015.05.003 . 13. Budak E., Ozturk E. Dynamics and stability of parallel turning operations. CIRP Annals – Manufacturing Technology , 2011, vol. 60, iss. 1, pp. 383–386. DOI: 10.1016/j.cirp.2011.03.028 . 14. Azvar M., Budak E. Multi-dimensional chatter stability for enhanced productivity in different parallel turning strategies. International Journal of Machine Tools and Manufacture , 2017, vol. 123, рр . 116–128. DOI: 10.1016/j. ijmachtools.2017.08.005 . 15. Ozturk E., Comak A., Budak E. Tuning of tool dynamics for increased stability of parallel (simultaneous) turning processes. Journal of Sound and Vibration , 2016, vol. 360, pp. 17–30. DOI: 10.1016/j.jsv.2015.09.009 . 16. Chang Z., Chen Z.C., Wan N., Sun H . A new mathematical method of modeling parts in virtual CNC lathing and its application on accurate tool path generation. International Journal Advanced Manufacturing Technology , 2018, vol. 95, pp. 243–256. DOI: 10.1007/s00170-017-1202-4 . 17. Gouskov A.M., Guskov M.A., Tung D.D., Panovka G. Multi-cutter turning process stability analysis. Vibro- engineering PROCED İ A , 2018, vol. 17, pp. 124–129. DOI: 10.21595/vp.2018.19800 . 18. Kalidasan R. Yatin M., Sarma D.K., Senthilvelan S. Effect of distance between two cutting tools over cut- ting forces and heat generation in multi-tool turning process. Applied Mechanics and Materials , 2014, vol. 592–594, pp. 211–215. DOI: 10.4028/www.scienti fi c.net/AMM.592-594.211 . 19. Kalidasan R., Ramanuj V., Sarma D.K., Senthilvelan S. In fl uence of cutting speed and offset distance over cutting tool vibration in multi-tool turning process. Advanced Materials Research , 2014, vol. 984–985, pp. 100–105. DOI: 10.4028/www.scienti fi c.net/AMR.984-985.100. 20. Kalidasan R., Senthilvelan S., Dixit U.S., Jaiswal V. Double tool turning: machining accuracy, cutting tool wear and chip-morphology. International Journal of Precision Technology , 2016, vol. 6, no. 2, pp. 142–158. DOI: 10.1504/IJPTECH.2016.078189 . 21. Kalidasan R. Experimental Investigations on Double Tool Turning Process . A thesis of Dr. of Philosophy. Guwahati, India, 2017. 133 p. 22. Kalidasan R., Yatin M., Senthilvelan S., Sarma D.K. Preliminary experimental investigation on multi-tool turning process. Proceedings of the 5th International and 26th All India Manufacturing Technology, Design and Research Conference AIMTDR , Guwahati, 2014, pp. 50-1–50-5. 23. Kalidasan R., Yatin M., Sarma D.K., Senthilvelan S., Dixit U.S. An experimental study of cutting forces and temperature in multi-tool turning of grey cast iron. International Journal of Machining and Machinability of Materials , 2016, vol. 18, no. 5–6, pp. 540–551. DOI: 10.1504/IJMMM.2016.078992.

RkJQdWJsaXNoZXIy MTk0ODM1