Dimensional analysis and ANN simulation of chip-tool interface temperature during turning SS304

OBRABOTKAMETALLOV MATERIAL SCIENCE Том 23 № 3 2021 EQUIPMEN . INSTRUM TS Vol. No. 4 2021 9. Bapat P.S., Dhikale P.D., Shinde S.M., KulkarniA.P., Chinchanikar S.S.Anumerical model to obtain temperature distribution during hard turning of AISI 52100 steel. Materials Today: Proceedings , 2015, vol. 2, iss. 4–5, pp. 907– 914. DOI: 10.1016/j.matpr.2015.07.150. 10. Dhar N.R., Ahmed M.T., Islam S. An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. International Journal of Machine Tools and Manufacture , 2007, vol. 47, iss. 5, pp. 748– 753. DOI: 10.1016/j.ijmachtools.2006.09.017. 11. Anagonye A.U., Stephenson D.A. Modeling cutting temperatures for turning inserts with various tool geometries and materials. Journal of Manufacturing Science and Engineering , 2002, vol. 124, iss. 3, pp. 544–552. DOI: 10.1115/1.1461838. 12. Kalss W., Reiter A., Der fl inger V., Gey C., Endrino J.L. Modern coatings in high performance cutting applications. International Journal of Refractory Metals and Hard Materials , 2006, vol. 24, iss. 5, pp. 399–404. DOI: 10.1016/j.ijrmhm.2005.11.005. 13. GrzesikW., Nieslony P. Coupled thermo-mechanical FEM-based modelling of the tool-chip contact behaviour for coated cutting tools. International Journal of Machining and Machinability of Materials , 2012, vol. 11, iss. 1, pp. 20–35. DOI: 10.1504/IJMMM.2012.044920. 14. Jiang F., Yan L., RongY. Orthogonal cutting of hardenedAISI D2 steel with TiAlN-coated inserts – simulations and experiments. International Journal of Advanced Manufacturing Technology , 2013, vol. 64, pp. 1555–1563. DOI: 10.1007/s00170-012-4122-3. 15. Grzesik W., Nieslony P. Prediction of friction and heat fl ow in machining incorporating thermophysical properties of the coating-chip interface. Wear , 2004, vol. 256, iss. 1–2, pp. 108–117. DOI: 10.1016/S0043- 1648(03)00390-9. 16. Knight W.A., Boothroyd G. Fundamentals of metal machining and machine tools . CRC Press, 2005. 602 p. ISBN 9781138502246. 17. Whitney E.D. Ceramic cutting tools: materials, development and performance . WilliamAndrew, 2012. 381 p. ISBN 9780815516316. 18. Drucker D.C., Ekstein H. A dimensional analysis of metal cutting. Journal of Applied Physics , 1950, vol. 21, no. 2, pp. 104–107. DOI: 10.1063/1.1699607. 19. Sekulic S. Investigation of tangential forces in metal cutting by dimensional analysis. Periodica Polytechnica Mechanical Engineering , 1976, vol. 20, no. 2, pp. 55–64. 20. Naderpour H., Kheyroddin A., Amiri G.G. Prediction of FRP-con fi ned compressive strength of concrete using arti fi cial neural networks. Composite Structures , 2010, vol. 92, no. 12, pp. 2817–2829. DOI: 10.1016/j. compstruct.2010.04.008. 21. Kulkarni A.P., Sargade V.G. Characterization and performance of AlTiN, AlTiCrN, TiN/TiAlN PVD coated carbide tools while turning SS 304. Materials and Manufacturing Processes , 2015, vol. 30, no. 6, pp. 748–755. DOI: 10.1080/10426914.2014.984217. Con fl icts of Interest The authors declare no con fl ict of interest.  2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1