Dimensional analysis and ANN simulation of chip-tool interface temperature during turning SS304
OBRABOTKAMETALLOV MATERIAL SCIENCE Том 23 № 3 2021 EQUIPMEN . INSTRUM TS Vol. No. 4 2021 9. Bapat P.S., Dhikale P.D., Shinde S.M., KulkarniA.P., Chinchanikar S.S.Anumerical model to obtain temperature distribution during hard turning of AISI 52100 steel. Materials Today: Proceedings , 2015, vol. 2, iss. 4–5, pp. 907– 914. DOI: 10.1016/j.matpr.2015.07.150. 10. Dhar N.R., Ahmed M.T., Islam S. An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. International Journal of Machine Tools and Manufacture , 2007, vol. 47, iss. 5, pp. 748– 753. DOI: 10.1016/j.ijmachtools.2006.09.017. 11. Anagonye A.U., Stephenson D.A. Modeling cutting temperatures for turning inserts with various tool geometries and materials. Journal of Manufacturing Science and Engineering , 2002, vol. 124, iss. 3, pp. 544–552. DOI: 10.1115/1.1461838. 12. Kalss W., Reiter A., Der fl inger V., Gey C., Endrino J.L. Modern coatings in high performance cutting applications. International Journal of Refractory Metals and Hard Materials , 2006, vol. 24, iss. 5, pp. 399–404. DOI: 10.1016/j.ijrmhm.2005.11.005. 13. GrzesikW., Nieslony P. Coupled thermo-mechanical FEM-based modelling of the tool-chip contact behaviour for coated cutting tools. International Journal of Machining and Machinability of Materials , 2012, vol. 11, iss. 1, pp. 20–35. DOI: 10.1504/IJMMM.2012.044920. 14. Jiang F., Yan L., RongY. Orthogonal cutting of hardenedAISI D2 steel with TiAlN-coated inserts – simulations and experiments. International Journal of Advanced Manufacturing Technology , 2013, vol. 64, pp. 1555–1563. DOI: 10.1007/s00170-012-4122-3. 15. Grzesik W., Nieslony P. Prediction of friction and heat fl ow in machining incorporating thermophysical properties of the coating-chip interface. Wear , 2004, vol. 256, iss. 1–2, pp. 108–117. DOI: 10.1016/S0043- 1648(03)00390-9. 16. Knight W.A., Boothroyd G. Fundamentals of metal machining and machine tools . CRC Press, 2005. 602 p. ISBN 9781138502246. 17. Whitney E.D. Ceramic cutting tools: materials, development and performance . WilliamAndrew, 2012. 381 p. ISBN 9780815516316. 18. Drucker D.C., Ekstein H. A dimensional analysis of metal cutting. Journal of Applied Physics , 1950, vol. 21, no. 2, pp. 104–107. DOI: 10.1063/1.1699607. 19. Sekulic S. Investigation of tangential forces in metal cutting by dimensional analysis. Periodica Polytechnica Mechanical Engineering , 1976, vol. 20, no. 2, pp. 55–64. 20. Naderpour H., Kheyroddin A., Amiri G.G. Prediction of FRP-con fi ned compressive strength of concrete using arti fi cial neural networks. Composite Structures , 2010, vol. 92, no. 12, pp. 2817–2829. DOI: 10.1016/j. compstruct.2010.04.008. 21. Kulkarni A.P., Sargade V.G. Characterization and performance of AlTiN, AlTiCrN, TiN/TiAlN PVD coated carbide tools while turning SS 304. Materials and Manufacturing Processes , 2015, vol. 30, no. 6, pp. 748–755. DOI: 10.1080/10426914.2014.984217. Con fl icts of Interest The authors declare no con fl ict of interest. 2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1