Study of the stress-strain and temperature fields in cutting tools using laser interferometry
OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 4 13. Davies M.A., Ueda T., M’Saoubi R., Mullany B., Cooke A.L. On the measurement of temperature in material removal processes. CIRP Annals , 2007, vol. 56, iss. 2, pp. 581 ‒ 604. DOI: 10.1016/j.cirp.2007.10.009. 14. Pujana J., Campo L. del, Pérez-Sáez R.B., Tello M.J., Gallego I., Arrazola P.J. Radiation thermometry applied to temperature measurement in the cutting process. Measurement Science and Technology , 2007, vol. 18, no. 11, pp. 3409 ‒ 3416. DOI: 10.1088/0957-0233/18/11/022. 15. Hijazi A., Sachidanandan S., Singh R., Madhavan V. A calibrated dual-wavelength infrared thermometry approach with non-greybody compensation for machining temperature measurements. Measurement Science and Technology , 2011, vol. 22, no. 2, pp. 1 ‒ 13. DOI: 10.1088/0957-0233/22/2/025106. 16. Magunov A.N. Laser thermometry of solids . Cambridge, Cambridge International Science Publishing, 2006. 240 p. ISBN 978-1-904602-12-5. 17. James J.D., Spittle J.A., Brown S.G.R., Evans R.W. A review of measurement techniques for the thermal expansion coef fi cient of metals and alloys at elevated temperatures. Measurement Science and Technology , 2001, vol. 12, pp. R1–R15. DOI: 10.1088/0957-0233/12/3/201. 18. Goryainov V.V., Popov M.I., Chernyshov A.D. Solving the stress problem in a sharp wedge-whaped cutting tool using the quick decomposition method and the problem of matching boundary conditions. Mechanics of Solids , 2019, vol. 54, no. 7, pp. 1083–1097. DOI: 10.3103/S0025654419070094. 19. Klocke F., Brockmann M., Gierlings S., Veselovac D. Analytical model of temperature distribution in metal cutting based on potential theory. Mechanical Sciences , 2015, vol. 6, pp. 89 ‒ 94. DOI: 10.5194/ms-6-89-2015. 20. Arrazola P.J., Özel T., Umbrello D., Davies M., Jawahir I.S. Recent advances in modelling of metal machining processes. CIRP Annals , 2013, vol. 62, iss. 2, pp. 695 ‒ 718. DOI: 10.1016/j.cirp.2013.05.006. 21. Bezyazychnyi V.F., Szcerek M. Thermal processes research development in machine-building technology. Journal of Mining Institute , 2018, vol. 232, pp. 395–400. DOI:10.31897/pmi.2018.4.395. 22. Olt J.J., Liyvapuu A.A., Liivapuu O.O., Maksarov V.V., Tärgla T.T. Mathematical modelling of cutting process system. Engineering Mathematics I. Cham, Springer, 2016, pp. 173 ‒ 186. DOI: 10.1007/978-3-319-42082- 0_11. 23. E fi movich I.A., Shvetsova E.I. Sposob issledovaniya deformatsii rezhushchego instrumenta v protsesse rezaniya [Method for study of cutting tool deformation in process of cutting]. Patent RF, no. 2436039, 2010. 24. E fi movich I.A., Zolotukhin I.S., Shvetsova E.I. Sposob opredeleniya temperaturnykh polei v rezhushchei chasti instrumenta v protsesse rezaniya [Method for determination of temperature fi elds in the cutting part of the instrument in process of cutting]. Patent RF, no. 2442967, 2010. 25. E fi movich I.A., Zolotukhin I.S., E fi movich V.I. Interferometricheskaya ustanovka [Interferometric rig]. Patent RF, no. 151653, 2014. 26. E fi movich I.A., Zolotukhin I.S., Zav’yalov E.S. Temperaturnyi koef fi tsient lineinogo rasshireniya vol’framo-kobal’tovykh tverdykh splavov [Thermal coef fi cient of linear expansion of tungsten-cobalt cemented carbide]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2019, vol. 21, no. 3, pp. 129–140. DOI: 10.17212/1994-6309-2019-21.3-129-140. Con fl icts of Interest The authors declare no con fl ict of interest. 2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1