Assessment of the effect of the steels structure dispersion on its magnetic and mechanical properties

OBRABOTKAMETALLOV Vol. 23 No. 4 2021 108 MATERIAL SCIENCE 2. Brnic J., Turkalj G., CanadijaM., Niu J. Experimental determination and prediction of the mechanical properties of steel 1.7225. Materials Science and Engineering: A , 2014, vol. 600, pp. 47–52. DOI: 10.1016/j.msea.2014.01.097. 3. Zambrano O.A., Coronado J.J., Rodríguez S.A. Mechanical properties and phases determination of low carbon steel oxide scales formed at 1200° C in air. Surface and Coatings Technology , 2015, vol. 282, pp. 155–162. DOI: 10.1016/j.surfcoat.2015.10.028. 4. Nie B., Xu S., Zhang Z., Li A. Surface morphology characteristics and mechanical properties of corroded cold-formed steel channel sections. Journal of Building Engineering , 2021, vol. 42, p. 102786. DOI: 10.1016/j. jobe.2021.102786. 5. Chen M., Xing Sh., Liu H., Jiang Ch., Zhan K., Ji V. Determination of surface mechanical property and residual stress stability for shot-peened SAF2507 duplex stainless steel by in situ X-ray diffraction stress analysis. Journal of Materials Research and Technology , 2020, vol. 9, iss. 4, pp. 7644–7654. DOI: 10.1016/j.jmrt.2020.05.028. 6. Zhao M.H., Han X.C., Wang G., Xu G.T. Determination of the mechanical properties of surface-modi fi ed layer of 18CrNiMo7-6 steel alloys after carburizing heat treatment. International Journal of Mechanical Sciences , 2018, vol. 148, pp. 84–93. DOI: 10.1016/j.ijmecsci.2018.08.021. 7. Sandomirskii S.G. Korrelyatsionnye zavisimosti mezhdu mekhanicheskimi svoistvami i magnitnym parametrom stali 40Kh [Correlation dependences between mechanical properties and magnetic parameter of the 41 С R4 steel]. Mekhanika mashin, mekhanizmov i materialov = Mechanics of Machines, Mechanisms and Materials , 2019, no. 3 (48), pp. 43–50. 8. Gorkunov E.S., Mitropolskaya S.Yu., Osintseva A.L., Vichuzhanin D.I. Issledovanie deformatsii i otsenka napryazhenii v materialakh s uprochnennym poverkhnostnym sloem magnitnymi metodami [Magnetic methods for deformation investigation and stress estimation in surface-hardened materials]. Fizicheskaya mezomekhanika = Physical Mesomechanics , 2009, vol. 12, no. 2, pp. 95–104. (In Russian). 9. Poletika I.M., Egorova N.M., Kulikova O.A., Zuev L.B. Ob ul’trazvukovom kontrole neodnorodnosti mekhanicheskikh svoistv goryachekatanoi stali [Supersonic testing of mechanical property uniformity in hot-rolled steel]. Zhurnal tekhnicheskoi fi ziki = Technical Physics Journal , 2001, vol. 71, no. 3, pp. 37–40. (In Russian). 10. Zheng Ch., Li L., Yang W., Sun Z. Relationship between microstructure and yield strength for plain carbon steel with ultra fi ne or fi ne (ferrite+cementite) structure. Materials Science and Engineering: A , 2014, vol. 617, pp. 31–38. DOI: 10.1016/j.msea.2014.08.050. 11. Zheng Ch., Li L. Effect of microstructure on mechanical behavior for eutectoid steel with ultra fi ne- or fi ne- grained ferrite+cementite structure. Materials Science and Engineering: A , 2017, vol. 688, pp. 83–91. DOI: 10.1016/j. msea.2017.01.082. 12. Ueji R., Tsuchida N., Terada D., Tsuji N., Tanaka Y., Takemura A., Kunishige K. Tensile properties and twinning behavior of high manganese austenitic steel with fi ne-grained structure. Scripta Materialia , 2008, vol. 59, iss. 9, pp. 963–966. DOI: 10.1016/j.scriptamat.2008.06.050. 13. Abedi H.R., Zarei Hanzaki A., Ou K.-L., Yu C.-H. Substructure hardening in duplex low density steel. Materials and Design , 2017, vol. 116, pp. 472–480. DOI: 10.1016/j.matdes.2016.12.020. 14. Bhattacharyya J.J., Nair S., Pagan D.C., Tari V., Lebensohn R.A., Rollett A.D., Agnew S.R. Elastoplastic transition in a metastable β -Titanium alloy, Timetal-18 –An in-situ synchrotron X-ray diffraction study. International Journal of Plasticity , 2021, vol. 139, p. 102947. DOI: 10.1016/j.ijplas.2021.102947. 15. Motaman S.A.H., Haase Ch. The microstructural effects on the mechanical response of polycrystals: a comparative experimental-numerical study on conventionally and additively manufactured metallic materials. International Journal of Plasticity , 2021, vol. 140, p. 102941. DOI: 10.1016/j.ijplas.2021.102941. 16. Motaman S.A.H., Roters F., Haase Ch. Anisotropic polycrystal plasticity due to microstructural heterogeneity: a multi-scale experimental and numerical study on additively manufactured metallic materials. Acta Materialia , 2020, vol. 185, pp. 340–369. DOI: 10.1016/j.actamat.2019.12.003. 17. GOST 6996–66. Svarnye soedineniya. Metody opredeleniya mekhanicheskikh svoistv [State Standard 6996– 66. Welded joints. Methods of mechanical properties determination]. Moscow, Standards Publ., 2005. 62 p. 18. Grokhovskiy V.I. [Possibilities of digital microscopy in metallography]. Tsifrovaya mikroskopiya: materialy shkoly seminara [Digital microscopy. School-seminar materials]. Ekaterinburg, USTU-UPI Publ., 2001, pt. 1, pp. 18–20. (In Russian). 19. Pomazova A.V., Panova T.V., Gering G.I. Vliyanie raznozernistosti struktury na korrozionnuyu stoikost’ naruzhnoi poverkhnosti trub iz uglerodistoi stali 20, primenyaemykh v teploenergetike [In fl uence of the uneven grain structure on the corrosion resistance of the outer surface of pipes made of carbon steel 20 used in heat power engineering]. Vestnik YuUrGU. Seriya: Metallurgiya = Bulletin of the South Ural State University. Series: Metallurgy , 2014, vol. 14, no. 4, pp. 37–44.

RkJQdWJsaXNoZXIy MTk0ODM1