Assessment of the effect of the steels structure dispersion on its magnetic and mechanical properties

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 23 No. 4 2021 It shows that the determining of the grain size factor value according to various criteria (area or grain diam- eter) does not signi fi cantly affect the relationship between this value and the ultimate strength, the internal stresses value and the coercive force. 2. The obtained research results show that the observed dropouts of points corresponding to characteris- tic thermal effects lead to certain structural and phase changes. They affect the steel structure homogeneity and the distortions in the crystal lattice that are caused by the large-angle boundaries and other factors. The difference in the processes taking place in the steels under consideration is associated with the percentage of alloying elements in it. 3. The analysis performed can be regarded as a concept for the development of the structural de fi nition of the internal mechanisms of a multiphase system, which affect the mechanical and magnetic properties of steels. The use of the given data on the effect of the structure dispersion on steel parameters will allow predicting the dangerous states of structures arising under mechanical loads, as well as developing the most effective diagnostic methods. References 1. Novikov V.F., Neradovskii D.F., Sokolov R.A. Ispol’zovanie kvazistaticheskikh petel’ magnitnogo gisterezisa dlya kontrolya struktury stali [The using of quasi-static magnetic hysteresis loops to control steel structures]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie = Bulletin PNRPU. Mechanical engineering, materials science , 2016, vol. 18, no. 2, pp. 38–49. DOI: 10/15593/2224- 9877/2016.2.03. 2. Brnic J., Turkalj G., CanadijaM., Niu J. Experimental determination and prediction of the mechanical properties of steel 1.7225. Materials Science and Engineering: A , 2014, vol. 600, pp. 47–52. DOI: 10.1016/j.msea.2014.01.097. 3. Zambrano O.A., Coronado J.J., Rodríguez S.A. Mechanical properties and phases determination of low carbon steel oxide scales formed at 1200° C in air. Surface and Coatings Technology , 2015, vol. 282, pp. 155–162. DOI: 10.1016/j.surfcoat.2015.10.028. 4. Nie B., Xu S., Zhang Z., Li A. Surface morphology characteristics and mechanical properties of corroded cold-formed steel channel sections. Journal of Building Engineering , 2021, vol. 42, p. 102786. DOI: 10.1016/j. jobe.2021.102786. 5. Chen M., Xing Sh., Liu H., Jiang Ch., Zhan K., Ji V. Determination of surface mechanical property and residual stress stability for shot-peened SAF2507 duplex stainless steel by in situ X-ray diffraction stress analysis. Journal of Materials Research and Technology , 2020, vol. 9, iss. 4, pp. 7644–7654. DOI: 10.1016/j.jmrt.2020.05.028. 6. Zhao M.H., Han X.C., Wang G., Xu G.T. Determination of the mechanical properties of surface-modi fi ed layer of 18CrNiMo7-6 steel alloys after carburizing heat treatment. International Journal of Mechanical Sciences , 2018, vol. 148, pp. 84–93. DOI: 10.1016/j.ijmecsci.2018.08.021. 7. Sandomirskii S.G. Korrelyatsionnye zavisimosti mezhdu mekhanicheskimi svoistvami i magnitnym parametrom stali 40Kh [Correlation dependences between mechanical properties and magnetic parameter of the 41 С R4 steel]. Mekhanika mashin, mekhanizmov i materialov = Mechanics of Machines, Mechanisms and Materials , 2019, no. 3 (48), pp. 43–50. 8. Gorkunov E.S., Mitropolskaya S.Yu., Osintseva A.L., Vichuzhanin D.I. Issledovanie deformatsii i otsenka napryazhenii v materialakh s uprochnennym poverkhnostnym sloem magnitnymi metodami [Magnetic methods for deformation investigation and stress estimation in surface-hardened materials]. Fizicheskaya mezomekhanika = Physical Mesomechanics , 2009, vol. 12, no. 2, pp. 95–104. (In Russian). 9. Poletika I.M., Egorova N.M., Kulikova O.A., Zuev L.B. Ob ul’trazvukovom kontrole neodnorodnosti mekhanicheskikh svoistv goryachekatanoi stali [Supersonic testing of mechanical property uniformity in hot-rolled steel]. Zhurnal tekhnicheskoi fi ziki = Technical Physics Journal , 2001, vol. 71, no. 3, pp. 37–40. (In Russian). 10. Zheng Ch., Li L., Yang W., Sun Z. Relationship between microstructure and yield strength for plain carbon steel with ultra fi ne or fi ne (ferrite+cementite) structure. Materials Science and Engineering: A , 2014, vol. 617, pp. 31–38. DOI: 10.1016/j.msea.2014.08.050. 11. Zheng Ch., Li L. Effect of microstructure on mechanical behavior for eutectoid steel with ultra fi ne- or fi ne- grained ferrite+cementite structure. Materials Science and Engineering: A , 2017, vol. 688, pp. 83–91. DOI: 10.1016/j. msea.2017.01.082. 12. Ueji R., Tsuchida N., Terada D., Tsuji N., Tanaka Y., Takemura A., Kunishige K. Tensile properties and twinning behavior of high manganese austenitic steel with fi ne-grained structure. Scripta Materialia , 2008, vol. 59, iss. 9, pp. 963–966. DOI: 10.1016/j.scriptamat.2008.06.050.

RkJQdWJsaXNoZXIy MTk0ODM1