Enhanced assessment of technological factors for Ti-6Al-4V and Al-Cu-Mg strength properties

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 23 No. 4 2021 8. Shiozawa K., Nashino S., Morii Y. Subsurface crack initiation and propagation mechanism of high-strength steelin very high cycle fatigue regime. International Journal of Fatigue , 2006, vol. 28, no. 11, pp. 1521–1532. DOI: 10.1016/j.ijfatigue.2005.08.015. 9. Shanyavskii A.A. Modelirovanie ustalostnykh razrushenii metallov: sinergetika v aviatsii [Modeling of fatigue cracking of metals. Synergetics for aviation]. Ufa, Monogra fi ya Publ., 2007. 500 p. ISBN 978-5-94920-058-2. 10. Locati L. Le prove di ca fi ca come ausilio alla prodetta sone ed alle predusioni. Metallurgia Italiana , 1955, vol. 47, no. 9, pp. 245–260. 11. Prot E.M. Une nouvelle technique d’essai des materiaux. L’essai de fatigue sous chrse progressive. Revue de Metallurgie , 1948, vol. 45, no. 12, pp. 481–496. 12. Enomoto N. A method for determining the fatigue limit of metals by means of stepwise load increase tests. Proceedings – American Society for Testing and Materials , 1959, vol. 59, pp. 711–722. 13. Glage A., Weidner A., Biermann H. Effect of austenite stability on the low cycle fatigue behaviour and microstructure of high alloyed metastable austenitic cast TRIP-steels. Procedia Engineering , 2010, vol. 2, no. 1, pp. 2085–2094. DOI: 10.1016/j.proeng.2010.03.224. 14. Terent’ev V.F., Dobatkin S.V., Prosvirnin D.V., Bannykh I.O., Rybal’chenko O.V., Raab G.I. Ustalostnaya prochnost’ austenitnoi stali Kh18N10T posle ravnokanal’nogo uglovogo pressovaniya [Fatigue strength of austenitic steel of Kh18N10T grade after equal-channel angular extrusion]. Deformatsiya i razrushenie materialov = Russian Metallurgy (Metally) , 2008, no. 10, pp. 30–38. (In Russian). 15. Yang Y.S., Bae J.G., Park C.G. Improvement of the bending fatigue resistance of the hyper-eutectoid steel wires used for tire cords by a post-processing annealing. Materials Science and Engineering: A , 2008, vol. 488, no. 1–2, pp. 554–561. DOI: 10.1016/j.msea.2007.11.048. 16. Makarov A.V., Savrai R.A., Schastlivtsev V.M., Tabatchikova T.I., Yakovleva I.L., Egorova L.Y. Structural features of the behavior of a high-carbon pearlitic steel upon cyclic loading. The Physics of Metals and Metallography , 2011, vol. 111, no. 1, pp. 95–109. DOI: 10.1134/S0031918X11010091. Translated from Fizika metallov i metallovedenie , 2011, vol. 111, no. 1, pp. 97–111. 17. Shchipachev A.M., Poyarkova E.V. Vliyanie ustalostnoi povrezhdaemosti na tverdost’ i vnutrennyuyu nakoplennuyu energiyu metalla [Fatigue deterioration in fl uence on hardness and internal accumulated energy]. Vestnik U fi mskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta = Vestnik USATU , 2007, vol. 9, no. 6 (24), pp. 152–157. 18. Aleshin N.P., Shcherbinskii V.G. Radiatsionnaya, ul’trozvukovaya i magnitnaya defektoskopiya metalloizdelii [Radiation, ultrasonic and magnetic fl aw detection of metal products]. Moscow, Vysshaya shkola Publ., 1991. 271 p. ISBN 5-06-000923-8. 19. Gorkunov E.S., Savrai R.A., Makarov A.V., Zadvorkin S.M. Magnetic techniques for estimating elastic and plastic strains in steels under cyclic loading. Diagnostics, Resource and Mechanics of Materials and Structures , 2015, iss. 2, pp. 6–15. DOI: 10.17804/2410-9908.2015.2.006-015. (In Russian). 20. Makhutov N.A., Dubov A.A., Denisov A.S. Issledovanie staticheskikh i tsiklicheskikh deformatsii s ispol’zovaniem metoda magnitnoi pamyati metalla [Study of static and cyclic deformations using the metal magnetic memory method]. Zavodskaya laboratoriya. Diagnostika materialov = Industrial laboratory. Materials diagnostics , 2008, vol. 74, no. 3, pp. 42–46. (In Russian). 21. Muratov K.R., Novikov V.F., Neradovskii D.F., Kazakov R.K. Magnetoelastic demagnetization of steel under cyclic loading. The Physics of Metals and Metallography , 2018, vol. 119, no. 1, pp. 18–25. DOI: 10.1134/ S0031918X1801012X. Translated from Fizika metallov i metallovedenie , 2018, vol. 119, no. 1, pp. 19–25. DOI: 10.7868/S0015323018010035. 22. Panin V.E., PaninA.V., Elsukova T.F., Kuzina O.Yu. Effekt “shakhmatnoi doski” v raspredelenii napryazhenii i deformatsii na interfeisakh v nagruzhennom tverdom tele: eksperimental’naya veri fi katsiya i mekhanizmy mezoskopicheskogo kanalirovaniya [Effect of “chessboard” stress and strain distribution on interfaces in a loaded solid: experimental veri fi cation and mesoscopic channeling mechanisms]. Fizicheskaya mezomekhanika = Physical Mesomechanics , 2005, vol. 8, no. 6, pp. 97–105. (In Russian). 23. KapustinV.I., GiletaV.P., Zakharchenko K.V. Eksperimental’noe izuchenie zakonomernostei deformirovaniya alyuminievykh splavov pri regulyarnykh nagruzheniyakh [The experimental study of regularities of aluminum alloys deformation in case of regular stresses]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2011, no. 4 (53), pp. 40–43. 24. Shanyavskii A.A., Banov M.D., Beklemishev N.N. Diagnostika ustalosti aviatsionnykh konstruktsii akusticheskoi emissiei [Diagnostics of fatigue of aircraft structures by acoustic emission]. Moscow, MAI Publ., 2017. 186 p. ISBN 978-5-4316-0405-8.

RkJQdWJsaXNoZXIy MTk0ODM1