Synthesis of titanium carbide and titanium diboride for metal processing and ceramics production

OBRABOTKAMETALLOV Vol. 23 No. 4 2021 166 MATERIAL SCIENCE 20. Kuvshinov G.G., Mogilnykh Yu.L., Kuvshinov D.G. Yermakov D.Yu., Yermakova M.A., Salanov A.N., Ru- dina N.A. Mechanism of porous fi lamentous carbon granule formation on catalytic hydrocarbon decomposition. Carbon , 1999, vol. 37, pp. 1239–1246. 21. Krutskii Yu.L., Nepochatov Yu.K., Pel’ A.N., Skovorodin I.N., Dyukova K.D., Krutskaya T.M., Kuchumo- va I.D., Mats O.E., Tyurin A.G., Emurlaeva Yu.Yu., Podryabinkin S.I. Synthesis of polydisperse boron carbide and synthesis of a ceramic on its basis. Zhurnal prikladnoi khimii = Russian Journal of Applied Chemistry , 2019, vol. 92, no. 6, pp. 750–758. DOI: 10.1134/S1070427219060041. (In Russian). 22. Blott S.J., Pye K. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms , 2001, vol. 26, pp. 1237–1248. 23. Samsonov G.V., ed. Svoistva elementov [Properties of the elements]. Pt. 1. Moscow, Metallurgiya Publ., 1987. 216 p. 24. Kazenas E.K., Tsvetkov Yu.V. Termodinamika ispareniya oksidov [Thermodynamics of evaporation of ox- ides]. Moscow, LKI Publ., 2008. 480 p. 25. Bolgar A.S., Turchanin A.G., Fesenko V.V. Termodinamicheskie svoistva karbidov [Thermodynamic proper- ties of carbides]. Kiev, Naukova dumka Publ., 1973. 272 p. 26. Shestakov V.A., Gudyma T.S., Krutskii Yu.L., Uvarov N.F. Determination of the optimal temperature range for synthesis of B 4 C–TiB 2 and B 4 C–ZrB 2 powder composite materials. Materials Today: Proceedings , 2020, vol. 31, pp. 56–58. DOI: 10.1016/j.matpr.2020.05.822. Con fl icts of Interest The authors declare no con fl ict of interest.  2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1