Synthesis of titanium carbide and titanium diboride for metal processing and ceramics production
OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 23 No. 4 2021 metallurgiya i funktsional’nye pokrytiya = Universities ʹ Proceedings. Powder metallurgy а nd functional coatings , 2009, no. 3, pp. 41–50. (In Russian). 14. Kislyi P.S., Kuzenkova M.A., Bodnaruk N.I., Grabchuk B.L. Karbid bora [Boron carbide]. Kiev, Naukova dumka Publ., 1988. 216 p. 15. Zhang W., Yamashita S., Kita H. Progress in pressureless sintering of boron carbide ceramics – a review. Ad- vances of Applied Ceramics , 2019, vol. 118 (4), pp. 222–239. DOI: 10.1080/17436753.2019.1574285. 16. Srivatsan T.S., Gurupsarad G., Black D., Radhakrishnan R., Sudarshan T.S. In fl uence of TiB 2 content on mi- crostructure and hardness of TiB 2 –B 4 C composite . Powder Technology , 2005, vol. 159, pp. 161–167. DOI: 10.1016/j. powtec.2005.08.003. 17. Heydari M.S., Baharvandi H.R. Comparing the effect of different sintering methods for ceramics on the physical and mechanical properties of B 4 C–TiB 2 nanocomposites. International Journal of Refractory Metals and Hard Materials , 2015, vol. 51, pp. 224–232. DOI: 10.1016/j.ijrmhm.2015.04.003. 18. Huang S., Vanmeensel K., Malek O., Biest O. Van der, Vleugels J. Microstructure and mechanical properties of pulsed electric current sintered B 4 C-TiB 2 composite. Materials Science and Engineering A , 2011, vol. 528 (3), pp. 1302–1309. DOI: 10.1016/j.msea.2010.10.022. 19. Zhu Y., Cheng H., Wang Y., An R. Effects of carbon and silicon on microstructure and mechanical proper- ties of pressureless sintered B 4 C/TiB 2 composites. Journal of Alloys and Compounds , 2019, vol. 772, pp. 537–545. DOI: 10.1016/j.jallcom.2018.09.129. 20. Kuvshinov G.G., Mogilnykh Yu.L., Kuvshinov D.G. Yermakov D.Yu., Yermakova M.A., Salanov A.N., Ru- dina N.A. Mechanism of porous fi lamentous carbon granule formation on catalytic hydrocarbon decomposition. Carbon , 1999, vol. 37, pp. 1239–1246. 21. Krutskii Yu.L., Nepochatov Yu.K., Pel’ A.N., Skovorodin I.N., Dyukova K.D., Krutskaya T.M., Kuchumo- va I.D., Mats O.E., Tyurin A.G., Emurlaeva Yu.Yu., Podryabinkin S.I. Synthesis of polydisperse boron carbide and synthesis of a ceramic on its basis. Zhurnal prikladnoi khimii = Russian Journal of Applied Chemistry , 2019, vol. 92, no. 6, pp. 750–758. DOI: 10.1134/S1070427219060041. (In Russian). 22. Blott S.J., Pye K. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms , 2001, vol. 26, pp. 1237–1248. 23. Samsonov G.V., ed. Svoistva elementov [Properties of the elements]. Pt. 1. Moscow, Metallurgiya Publ., 1987. 216 p. 24. Kazenas E.K., Tsvetkov Yu.V. Termodinamika ispareniya oksidov [Thermodynamics of evaporation of ox- ides]. Moscow, LKI Publ., 2008. 480 p. 25. Bolgar A.S., Turchanin A.G., Fesenko V.V. Termodinamicheskie svoistva karbidov [Thermodynamic proper- ties of carbides]. Kiev, Naukova dumka Publ., 1973. 272 p. 26. Shestakov V.A., Gudyma T.S., Krutskii Yu.L., Uvarov N.F. Determination of the optimal temperature range for synthesis of B 4 C–TiB 2 and B 4 C–ZrB 2 powder composite materials. Materials Today: Proceedings , 2020, vol. 31, pp. 56–58. DOI: 10.1016/j.matpr.2020.05.822. Con fl icts of Interest The authors declare no con fl ict of interest. 2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1