Synthesis of titanium carbide and titanium diboride for metal processing and ceramics production

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 23 No. 4 2021 metallurgiya i funktsional’nye pokrytiya = Universities ʹ Proceedings. Powder metallurgy а nd functional coatings , 2009, no. 3, pp. 41–50. (In Russian). 14. Kislyi P.S., Kuzenkova M.A., Bodnaruk N.I., Grabchuk B.L. Karbid bora [Boron carbide]. Kiev, Naukova dumka Publ., 1988. 216 p. 15. Zhang W., Yamashita S., Kita H. Progress in pressureless sintering of boron carbide ceramics – a review. Ad- vances of Applied Ceramics , 2019, vol. 118 (4), pp. 222–239. DOI: 10.1080/17436753.2019.1574285. 16. Srivatsan T.S., Gurupsarad G., Black D., Radhakrishnan R., Sudarshan T.S. In fl uence of TiB 2 content on mi- crostructure and hardness of TiB 2 –B 4 C composite . Powder Technology , 2005, vol. 159, pp. 161–167. DOI: 10.1016/j. powtec.2005.08.003. 17. Heydari M.S., Baharvandi H.R. Comparing the effect of different sintering methods for ceramics on the physical and mechanical properties of B 4 C–TiB 2 nanocomposites. International Journal of Refractory Metals and Hard Materials , 2015, vol. 51, pp. 224–232. DOI: 10.1016/j.ijrmhm.2015.04.003. 18. Huang S., Vanmeensel K., Malek O., Biest O. Van der, Vleugels J. Microstructure and mechanical properties of pulsed electric current sintered B 4 C-TiB 2 composite. Materials Science and Engineering A , 2011, vol. 528 (3), pp. 1302–1309. DOI: 10.1016/j.msea.2010.10.022. 19. Zhu Y., Cheng H., Wang Y., An R. Effects of carbon and silicon on microstructure and mechanical proper- ties of pressureless sintered B 4 C/TiB 2 composites. Journal of Alloys and Compounds , 2019, vol. 772, pp. 537–545. DOI: 10.1016/j.jallcom.2018.09.129. 20. Kuvshinov G.G., Mogilnykh Yu.L., Kuvshinov D.G. Yermakov D.Yu., Yermakova M.A., Salanov A.N., Ru- dina N.A. Mechanism of porous fi lamentous carbon granule formation on catalytic hydrocarbon decomposition. Carbon , 1999, vol. 37, pp. 1239–1246. 21. Krutskii Yu.L., Nepochatov Yu.K., Pel’ A.N., Skovorodin I.N., Dyukova K.D., Krutskaya T.M., Kuchumo- va I.D., Mats O.E., Tyurin A.G., Emurlaeva Yu.Yu., Podryabinkin S.I. Synthesis of polydisperse boron carbide and synthesis of a ceramic on its basis. Zhurnal prikladnoi khimii = Russian Journal of Applied Chemistry , 2019, vol. 92, no. 6, pp. 750–758. DOI: 10.1134/S1070427219060041. (In Russian). 22. Blott S.J., Pye K. Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms , 2001, vol. 26, pp. 1237–1248. 23. Samsonov G.V., ed. Svoistva elementov [Properties of the elements]. Pt. 1. Moscow, Metallurgiya Publ., 1987. 216 p. 24. Kazenas E.K., Tsvetkov Yu.V. Termodinamika ispareniya oksidov [Thermodynamics of evaporation of ox- ides]. Moscow, LKI Publ., 2008. 480 p. 25. Bolgar A.S., Turchanin A.G., Fesenko V.V. Termodinamicheskie svoistva karbidov [Thermodynamic proper- ties of carbides]. Kiev, Naukova dumka Publ., 1973. 272 p. 26. Shestakov V.A., Gudyma T.S., Krutskii Yu.L., Uvarov N.F. Determination of the optimal temperature range for synthesis of B 4 C–TiB 2 and B 4 C–ZrB 2 powder composite materials. Materials Today: Proceedings , 2020, vol. 31, pp. 56–58. DOI: 10.1016/j.matpr.2020.05.822. Con fl icts of Interest The authors declare no con fl ict of interest.  2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1