Normal force influence on smoothing and hardening of steel 03Cr16Ni15Mo3Ti1 surface layer during dry diamond burnishing with spherical indenter

OBRABOTKAMETALLOV Vol. 24 No. 1 2022 20 TECHNOLOGY References 1. Lo K.H., Shek C.H., Lai J.K.L. Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 2009, vol. 65, iss. 4–6, pp. 39–104. DOI: 10.1016/j.mser.2009.03.001. 2. Borgioli F. From austenitic stainless steel to expanded austenite-S phase: formation, characteristics and properties of an elusive metastable phase. Metals, 2020, vol. 10, iss. 2, art. 187. DOI: 10.3390/met10020187. 3. SolomonN., Solomon I. Effect of deformation-inducedphase transformationonAISI 316 stainless steel corrosion resistance. Engineering Failure Analysis, 2017, vol. 79, pp. 865–875. DOI: 10.1016/j.engfailanal.2017.05.031. 4. Astafurova E.G., Melnikov E.V., Astafurov S.V., Ratochka I.V., Mishin I.P., Maier G.G., Moskvina V.A., Zakharov G.N., Smirnov A.I., Bataev V.A. Hydrogen embrittlement effects on austenitic stainless steels with ultrafi ne-grained structure of different morphology. Physical Mesomechanics, 2018, vol. 22, iss. 4, pp. 313–326. DOI: 10.1134/S1029959919040076. 5. Melnikov E.V., Maier G.G., Moskvina V.A., Astafurova E.G. Vliyanie nasyshcheniya vodorodom na strukturu i mekhanicheskie svoistva austenitnoi stali 01Kh17N13М3 [Inluence of hydrogen saturation on the structure and mechanical properties of Fe-17Cr-13Ni-3Mo-0.01С austenitic steel during rolling at different temperatures]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, iss. 2, pp. 81–97. DOI: 10.17212/1994-6309-2021-23.2-81-97. 6. Sagaradze V.V., Pavlov V.A., Alyabiev V.M., Goshchitskiy B.N., Kozlov A.V., Lapin S.S., Loguntsev Ye.N., Nalesnik V.M., Khakhalkin N.V., Shalayev V.I., Gaydukov M.G., Sergeyev G.A. The infl uence of intermetallic ageing during irradiation by fast neutrons on void formation in austenitic stainless steels. Physics of Metals and Metallography, 1988, vol. 65, iss. 5, pp. 128–135. 7. Sagaradze V.V., NalesnikV.M., ShejnkmanA.G., Bibilashvili Yu.K.,Aljab’evV.M., BarsanovV.I., KozlovA.V., Lapin S.S., Pavlov V.A., Saraev O.M., Uvarov A.I., Shalaev V.I. Stal’ [Steel]. Patent RF, no. 1807735, 1995. 8. Sagaradze V.V., Nalesnik V.M., Lapin S.S., Aliabev V.M. Precipitation hardening and radiation damageability of austenitic stainless steels. Journal of Nuclear Materials, 1993, vol. 202, iss. 1–2, pp. 137–144. DOI: 10.1016/00223115(93)90036-X. 9. Sagaradze V.V., Lapin S.S. Unconventional approaches to the suppression of irradiation-induced swelling of stainless steels. The Physics of Metals and Metallography, 1997, vol. 83, iss. 4, pp. 417–427. 10. Wang C., Han J., Zhao J., Song Y., Man J., Zhu H., Sun J., Fang L. Enhanced wear resistance of 316 L stainless steel with a nanostructured surface layer prepared by ultrasonic surface rolling. Coatings, 2019, vol. 9, iss. 4, art. 276. DOI: 10.3390/coatings9040276. 11. Arifvianto B., Suyitno, Mahardika M. Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel. Applied Surface Science, 2012, vol. 258, iss. 10, pp. 4538–4543. DOI: 10.1016/j. apsusc.2012.01.021. 12. Suyitno, Arifvianto B., Widodo T.D., Mahardika M., Dewo P., Salim U.A. Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance ofAISI 316L stainless steel. International Journal of Minerals, Metallurgy and Materials, 2012, vol. 19, iss. 12, pp. 1093–1099. DOI: 10.1007/s12613-0120676-1. 13. Makarov A.V., Skorynina P.A., Volkova E.G., Osintseva A.L. Effect of friction treatment on the structure, micromechanical and tribological properties of austenitic steel 03Kh16N14M3T. Metal Science and Heat Treatment, 2020, vol. 61, iss. 11–12, pp. 764–768. DOI: 10.1007/s11041-020-00497-1. 14. Makarov A.V., Skorynina P.A., Osintseva A.L., Yurovskikh A.S., Savrai R.A. Povyshenie tribologicheskikh svoistv austenitnoi stali 12Kh18N10T nanostrukturiruyushchei friktsionnoi obrabotkoi [Improving the tribological properties of austenitic 12Kh18N10Tsteel by nanostructuring frictional treatment]. Obrabotkametallov (tekhnologiya, oborudovanie, instrumenty) =Metal Working and Material Science, 2015, no. 4 (69), pp. 80–92. DOI: 10.17212/19946309-2015-4-80-92. 15. MakarovA.V., Skorynina P.A., YurovskikhA.S., OsintsevaA.L. Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel. Physics of Metals and Metallography, 2017, vol. 118, iss. 12, pp. 1225–1235. DOI: 10.1134/S0031918X17120092. 16. Kuznetsov V.P., Smolin I.Yu., Dmitriev A.I., Tarasov S.Yu., Gorgots V.G. Toward control of subsurface strain accumulation in nanostructuring burnishing on thermostrengthened steel. Surface and Coatings Technology, 2016, vol. 285, pp. 171–178. DOI: 10.1016/j.surfcoat.2015.11.045. 17. Sachin B., Narendranath S., Chakradhar D. Analysis of surface hardness and surface roughness in diamond burnishing оf 17-4 PH stainless steel. IOP Conference Series: Materials Science and Engineering, 2019, vol. 577, art. 012075. DOI: 10.1088/1757-899X/577/1/012075.

RkJQdWJsaXNoZXIy MTk0ODM1