The effect of the relative vibrations of the abrasive tool and the workpiece on the probability of material removing during finishing grinding

OBRABOTKAMETALLOV Vol. 24 No. 1 2022 46 EQUIPMENT. INSTRUMENTS References 1. Novoselov Y., Bogutsky V., Shron L. Patterns of removing material in workpiece – grinding wheel contact area. Procedia Engineering, 2017, vol. 206, pp. 991–996. DOI: 10.1016/j.proeng.2017.10.583. 2. Kassen G., Werner G. Kinematische Kenngrößen des Schleifvorganges [Kinematic parameters of the grinding process]. Industrie-Anzeiger = Industry Scoreboard, 1969, no. 87, pp. 91–95. (In German). 3. Malkin S., Guo C. Grinding technology: theory and applications of machining with abrasives. New York, Industrial Press, 2008. 372 р. ISBN 978-0-8311-3247-7. 4. Hou Z.B., Komanduri R. On the mechanics of the grinding process. Pt. 1. Stochastic nature of the grinding process. International Journal of Machine Tools and Manufacture, 2003, vol. 43, pp. 1579–1593. DOI: 10.1016/ S0890-6955(03)00186-X. 5. Lajmert P., Sikora V., Ostrowski D. A dynamic model of cylindrical plunge grinding process for chatter phenomena investigation. MATEC Web of Conferences, 2018, vol. 148, pp. 09004–09008. DOI: 10.1051/ matecconf/20181480900. 6. Leonesio M., Parenti P., Cassinari A., Bianchi G., Monn M. A time-domain surface grinding model for dynamic simulation. Procedia CIRP, 2012, vol. 4, pp. 166–171. DOI: 10.1016/j.procir.2012.10.030. 7. Sidorov D., Sazonov S., Revenko D. Building a dynamic model of the internal cylindrical grinding process. Procedia Engineering, 2016, vol. 150, pp. 400–405. DOI: 10.1016/j.proeng.2016.06.739. 8. Zhang N., Kirpitchenko I., Liu D.K. Dynamic model of the grinding process. Journal of Sound and Vibration, 2005, vol. 280, pp. 425–432. DOI: 10.1016/j.jsv.2003.12.006. 9. Ahrens M., Damm J., Dagen M., Denkena B., Ortmaier T. Estimation of dynamic grinding wheel wear in plunge grinding. Procedia CIRP, 2017, vol. 58, pp. 422–427. DOI: 10.1016/j.procir.2017.03.247. 10. Garitaonandia I., Fernandes M.H., Albizuri J. Dynamic model of a centerless grinding machine based on an updated FE model. International Journal of Machine Tools and Manufacture, 2008, vol. 48, pp. 832–840. DOI: 10.1016/j.ijmachtools.2007.12.001. 11. Tawakolia T., Reinecke H., Vesali A. An experimental study on the dynamic behavior of grinding wheels in high effi ciency deep grinding. Procedia CIRP, 2012, vol. 1, pp. 382–387. DOI: 10.1016/j.procir.2012.04.068. 12. Jung J., Kim P., Kim H., Seok J. Dynamic modeling and simulation of a nonlinear, non-autonomous grinding system considering spatially periodic waviness on workpiece surface. Simulation Modeling Practice and Theory, 2015, vol. 57, pp. 88–99. DOI: 10.1016/j.simpat.2015.06.005. 13. Yu H., Wang J., Lu Y. Modeling and analysis of dynamic cutting points density of the grinding wheel with an abrasive phyllotactic pattern. The International Journal of Advanced Manufacturing Technology, 2016, vol. 86, pp. 1933–1943. DOI: 10.1007/s00170-015-8262-0. 14. Guo J. Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding. The International Journal of Advanced Manufacturing Technology, 2014, vol. 75, pp. 1245–1252. DOI: 10.1007/ s00170-014-6189-5. 15. Soler Ya.I., Le N.V., Si M.D. Infl uence of rigidity of the hardened parts on forming the shape accuracy during fl at grinding. MATEC Web of Conferences, 2017, vol. 129, p. 01076. DOI: 10.1051/matecconf/201712901076. 16. Soler Ya.I., Khoang N.A. [Infl uence of the depth of cut on the height roughness of tools made of U10A steel during surface grinding with cubic boron nitride wheels]. Aviamashinostroenie i transport Sibiri: sbornik materialov IX Vserossiiskoi nauchno-prakticheskoi konferentsii [Aircraft engineering and transport of Siberia. Proceedings of the 9th All-Russian Scientifi c and Practical Conference]. Irkutsk National Research Technical University. Irkutsk, 2017, pp. 250–254. (In Russian). 17. Bubnov V.A., Knyazev A.N. Titan i ego splavy v mashinostroenii [Titanium and its alloys in mechanical engineering]. Vestnik Kurganskogo gosudarstvennogo universiteta. Seriya: Tekhnicheskie nauki = Bulletin of the Kurgan State University. Series: Technical Sciences, 2016, no. 3 (42), pp. 92–96. 18. Nosenko V.A., Fedotov E.V., Danilenko M.V. Matematicheskoe modelirovanie raspredeleniya vershin zeren pri shlifovanii v rezul’tate razlichnykh vidov iznashivaniya s ispol’zovaniem markovskikh sluchainykh protsessov [Mathematical simulation of distribution of abrasive grains at grinding in a result of various types of wear by using markov processes]. Mezhdunarodnyi nauchno-issledovatel’skii zhurnal = International Research Journal, 2015, no. 2-1 (33), pp. 101–106. 19. Gorbatyuk S.M., KochanovA.V. Method and equipment for mechanically strengthening the surface of rollingmill rolls. Metallurgist, 2012, vol. 56, no. 3–4, pp. 279–283. 20. Bratan S.M., Roshchupkin S.I., Kharchenko A.O., Chasovitina A.S. Veroyatnostnaya model’ udaleniya poverkhnostnogo sloya pri shlifovanii khrupkikh nemetallicheskikh materialov [Probabilistic model of surface layer

RkJQdWJsaXNoZXIy MTk0ODM1