Comparative study of cavitation erosion resistance of austenitic steels with different levels of metastability

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 24 No. 1 2022 4. Gorbachenko E.O. Otsenka dolgovechnosti metallicheskikh materialov i sudovogo oborudovaniya pri kavitatsionnom iznashivanii metodom profi lometrii. Diss. kand. tekhn. nauk [Evaluation of the durability of metallic materials and ship equipment during cavitation wear by the profi lometry method. PhD eng. sci. diss.]. St. Petersburg, 2019. 150 p. 5. Korobov Yu.S., Alwan H.L., Barbosa M., Lezhnin N.V., Soboleva N.N., Makarov A.V., Deviatiarov M.S., Davydov A.Yu. Soprotivlenie erozionno-korrozionnomu kavitatsionnomu vozdeistviyu WC–CoCr- i WC–NiCrpokrytii, poluchennykh metodom HVAF [Cavitation erosion-corrosion resistance of WC–CoCr and WC–NiCr HVAF coatings]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie = Bulletin PNRPU. Mechanical engineering, materials science, 2019, vol. 21, no. 1, pp. 20–27. DOI: 10.15593/2224-9877/2019.1.03. 6. Vyas B., Preece C. Cavitation erosion of face centered cubic metals. Metallurgical and Materials Transactions A, 1977, vol. 8, pp. 915–923. DOI: 10.1007/BF02661573. 7. Brujan E.A., Ikedab T., Matsumoto Y. Shock wave emission from a cloud of bubbles. Soft Matter, 2012, vol. 8, iss. 21, pp. 5777–5783. DOI: 10.1039/C2SM25379H. 8. Lauterborn W., Bolle H. Experimental investigation of cavitation bubble collapse in the neighborhood of a solid boundary. Journal of Fluid Mechanics, 1975, vol. 72, pp. 391–399. DOI: 10.1017/S0022112075003448. 9. Plesset M.S., Chapman R.B. Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. Journal of Fluid Mechanics, 1971, vol. 47, pp. 283–290. DOI: 10.1017/S0022112071001058. 10. Dular M., Bachert B., Stoffel B., Širok B. Relationship between cavitation structures and cavitation damage. Wear, 2004, vol. 257, pp. 1176–11841. DOI: 10.1016/j.wear.2004.08.004. 11. Vyas B., Preece C. Stress produced in a solid by cavitation. Journal of Applied Physics, 1976, vol. 47, pp. 5133–5138. DOI: 10.1063/1.322584. 12. Pohl M., Stella J., Hessing C. Comparative study on CuZnAl and CuMnZnAlNiFe shape memory alloys subjected to cavitation-erosion. Advanced Engineering Materials, 2003, vol. 5, pp. 251–256. DOI: 10.1002/ adem.200300341. 13. Espitia L.A., Toro A. Cavitation resistance, microstructure and surface topography of materials used for hydraulic components. Tribology International, 2010, vol. 43, pp. 2037–2045. DOI: 10.1016/j.triboint.2010.05.009. 14. Chiu K.Y., Cheng F.T., Man H.C. Cavitation erosion resistance of AISI 316L stainless steel laser surfacemodifi ed with NiTi. Materials Science and Engineering: A, 2005, vol. 392, pp. 348–358. DOI: 10.1016/j. msea.2004.09.035. 15. Chen M., Liu H., Wang L., Xu Z., Ji V., Jiang C. Residual stress and microstructure evolutions of SAF 2507 duplex stainless steel after shot peening. Applied Surface Science, 2018, vol. 459, pp. 155–163. DOI: 10.1016/j. apsusc.2018.07.182. 16. Park I.-C., Kim S.-J. Effect of pH of the sulfuric acid bath on cavitation erosion behavior in natural seawater of electroless nickel plating coating. Applied Surface Science, 2019, vol. 483, pp. 194–204. DOI: 10.1016/j. apsusc.2019.03.277. 17. Alwan H.L., Korobov Yu.S., Soboleva N.N., Lezhnin N.V., Makarov A.V., Nikolaeva E.P., Deviatiarov M.S. Cavitation erosion-corrosion resistance of deposited austenitic stainless steel/E308L-17 electrode. Solid State Phenomena, 2020, vol. 299, pp. 908–913. DOI: 10.4028/www.scientifi c.net/SSP.299.908. 18. Gualco A., Svoboda H.G., Surian E.S. Effect of welding parameters on microstructure of Fe-based nanostructured weld overlay deposited through FCAW-S. Welding International, 2016, vol. 30, pp. 573–580. DOI: 10.1080/ 09507116.2015.1096533. 19. Sreedhar B.K., Albert S.K., Pandit A.B. Improving cavitation erosion resistance of austenitic stainless steel in liquid sodium by hardfacing – comparison of Ni and Co based deposits. Wear, 2015, vol. 342–343, pp. 92–99. DOI: 10.1016/j. wear.2015.08.009. 20. Matikainen V., Niemi K., Koivuluoto H., Vuoristo P. Abrasion, erosion and cavitation erosion wear properties of thermally sprayed alumina based coatings. Coatings, 2014, vol. 4, pp. 18–36. DOI: 10.3390/coatings4010018. 21. Kumar R.K., Kamaraj M., Seetharamu S., Pramod T., Sampathkumaran P. Effect of spray particle velocity on cavitation erosion resistance characteristics of HVOF and HVAF processed 86WC-10Co4Cr hydro turbine coatings. Journal of Thermal Spray Technology, 2016, vol. 25, pp. 1217–1230. DOI: 10.1007/s11666-016-0427-3. 22. Li J., Kannan R., Shi M., Li L. Solidifi ed microstructure of wear-resistant Fe-Cr-C-B overlays. Metallurgical and Materials Transactions B, 2020, vol. 51, pp. 1291–1300. DOI: 10.1007/s11663-020-01863-3. 23. Tôn-Thât L. Experimental comparison of cavitation erosion rates of different steels used in hydraulic turbines. IOP Conference Series: Earth and Environmental Science, 2010, vol. 12, pp. 1–9. DOI: 10.1088/17551315/12/1/012052.

RkJQdWJsaXNoZXIy MTk0ODM1