Effect of the deformation degree at low temperatures on the phase transformations and properties of metastable austenitic steels

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 24 No. 1 2022 It was experimentally determined that for metastable austenitic steels, the fracture energy of samples under static bending turned out to be less than under dynamic bending. An increase in the rate of low-temperature deformation of samples prevents the development of phase martensitic transformations in steels. It was established that the obtained values of mechanical properties characteristics make it possible to recommend the studied metastable austenitic steels as a substitute for the widely used austenitic steel 12Cr18Ni10Ti up to a temperature of –196 °C, both for the deformed and for the cast state. References 1. Shokin Yu.I., ed., Moskvichev V.V., Makhutov N.A., Chernyaev A.P., Bukaemskii A.A., Burov A.E., Zyryanov I.A., Kozlov A.G., Koksharov I.I., Krushenko G.G., Lepikhin A.M., Mishin A.S., Moskvicheva L.F., Fedorova E.N., Tsyplyuk A.N. Treshchinostoikost’ i mekhanicheskie svoistva konstruktsionnykh materialov tekhnicheskikh sistem [Crack resistance and mechanical properties of structural materials of technical systems]. Novosibirsk, Nauka Publ., 2002. 334 p. 2. Peregudov A.А., Vologzhanina S.A., Igolkin A.F. Research of properties of austenitic steels. Key Engineering Materials, 2021, vol. 887, pp. 242–246. DOI: 10.4028/www.scientifi c.net/KEM.887.242. 3. Solntsev Yu.P., Titova T.I. Stali dlya Severa i Sibiri [Steels for the North and Siberia]. St. Petersburg, Khimizdat Publ., 2008. 352 p. ISBN 5-93808-049-5. 4. Vologjanina S.A., Igolkin A.F., Petkova A. Issledovanie vliyaniya nizkikh temperatur i deformatsii na svoistva austenitnoi stali 12Kh18N10T [Study of the effect of low temperatures and deformations on the properties of austenitic steel 12Kh18N10T]. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki = St. Petersburg Polytechnic University Journal of Engineering Science and Technology, 2019, vol. 25, no. 4, pp. 83– 93. DOI: 10.18721/JEST.25407. 5. Ermakov B.S., Vologzhanina S.A., Bobrovskij I.N., Bobrovskij N.M., Erisov Y. Resistance to brittle fracture and availability of austenitic steels. IOP Conference Series: Materials Science and Engineering, 2018, vol. 450, iss. 3, p. 032041. DOI: 10.1088/1757-899X/450/3/032041. 6. Matrosov M.Yu., Zikeev V.N., Martynov P.G., Shulga E.V., Nikitin V.S., Polovinkin V.N., Simonov Yu.A., Semin A.A. Razrabotka perspektivnykh obraztsov kriogennykh stalei dlya gazovozov i statsionarnykh tankovkhranilishch szhizhennogo prirodnogo gaza, prednaznachennykh dlya ispol’zovaniya v usloviyakh Arktiki [Development of advanced patterns of cryogenic steels for gas vessels and stationary storage tanks of liquefi ed natural gas designed for Arctic conditions]. Arktika: ekologiya i ekonomika = Arctic: Ecology and Economy, 2016, vol. 4 (24), pp. 80–89. 7. Gorynin V.I., Olenin M.I. Puti povysheniya khladostoikosti stali i svarnykh soedinenii [Ways to increase cold resistance of steel and welded joints]. St. Petersburg, Prometei Publ., 2017. 341 p. 8. Gorynin V.I., Kondrat’ev S.Yu., Olenin M.I., Rogozhkin V.V. Kontseptsiya karbidnogo konstruirovaniya stalei povyshennoi khladostoikosti [A concept of carbide design of steels with improved cold resistance]. Metallovedenie i termicheskaya obrabotka metallov = Metal Science and Heat Treatment, 2014, no. 10 (712), pp. 32–38. (In Russian). 9. Gorynin V.I., Kondrat’ev S.Yu., Olenin M.I. Povyshenie soprotivlyaemosti khrupkomu razrusheniyu perlitnykh i martensitnykh stalei pri termicheskom vozdeistvii na morfologiyu karbidnoi fazy [Raising the resistance of pearlitic and martensitic steels to brittle fracture under thermal action on the morphology of the carbide phase]. Metallovedenie i termicheskaya obrabotka metallov = Metal Science and Heat Treatment, 2013, no. 10 (700), pp. 22–29. (In Russian). 10. Rybin V.V., Malyshevskiy V.A., Khlusova E.I. Struktura i svoistva khladostoikikh stalei dlya konstruktsii severnogo ispolneniya [Structure and the properties of cold-resistant steels for the constructions of Northern design]. Voprosy materialovedeniya, 2006, no. 1 (45), pp. 24–44. (In Russian). 11. Kostina M.V., Bannykh O.A., Blinov V.M. Novyi nemagnitnyi Fe–Cr–N vysokoprochnyi korrozionno- i iznosostoikii splav. Ch. 1. Vliyanie khroma i azota na strukturu i fazovyi sostav Fe–Cr–N splavov [New non-magnetic Fe–Cr–N high strength corrosion and wear resistant alloy. Part I. Infl uence of chromium and nitrogen on the structure and phase composition of Fe–Cr–N alloys]. Elektrometallurgiya, 2005, no. 12, pp. 26–32. (In Russian). 12. Orlov V.V., Malyshevskii V.A., Khlusova E.I., Golosienko S.A. Production technology for arctic pipeline and marine steel. Steel in Translation, 2014, vol. 9, iss. 44, pp. 696–705. DOI: 10.3103/S0967091214090113. 13. Bannykh O.A., Bannykh I.O., Lukin E.I., Sorokin A.M. Structure and mechanical properties of high-strength structural steels. Russian Metallurgy (Metally), 2018, no. 6, pp. 528–532. DOI: 10.1134/S0036029518060046. 14. Schneiders T., Ritzenhoff R., Jung H., Herrera C., Bauch A. Industrial use of austenitic and duplex HNS- manufacture, application and properties. Proceedings of 12th International Conference on High Nitrogen Steels, Hamburg, 2014, pp. 120–127.

RkJQdWJsaXNoZXIy MTk0ODM1