Machining technology, digital modelling and shape control device for large parts

OBRABOTKAMETALLOV TECHNOLOGY Vol. 24 No. 2 2022 Fig. 2. Schematic diagram of the calculation of the processing module position (A – line corresponding to the axis of movement of the cutting tool edge) 0 m   , at 2 _ 1 _ 0 Ppo m Ppo m x x   and 2 _ 1 _ 0 Ppo m Ppo m y y   (2) 2 _ 1 _ 2 _ 1 _ arctg Ppo m Ppo m m Ppo m Ppo m y y x x               , at 2 _ 1 _ 0 Ppo m Ppo m x x   (3) m   , at 2 _ 1 _ 0 Ppo m Ppo m x x   and 2 _ 1 _ 0 Ppo m Ppo m y y   (4) 2 m    , at 2 _ 1 _ 0 Ppo m Ppo m x x   and 2 _ 1 _ 0 Ppo m Ppo m y y   (5) 2 m     , at 2 _ 1 _ Ppo m Ppo m x x   and 2 _ 1 _ 0 Ppo m Ppo m y y   , (6) where xРро1_m and yРро1_m – coordinates of point Pro1 in BCS general for m-position of the ISCD; x Рро2_m and yРро2_m – coordinates of point Pro2 in BCS general for m-position of the ISCD. Under known coordinates of the axis point of the support roller Pro1, the structural parameters of the ISCD and m  angle corresponding to the rotation of LCSISCD relative to BCS general, the geometric coordinates of the extreme point of the cutting part of the tool Pcut (hereinafter referred to as the cutting point) in BCSgeneral are found according to the formula (7): 1 _ _ max _ 1 _ cos( ) sin( ) sin( ) cos( ) Ppo m Pcut m m m Pcut m Ppo m m m x x N h y y                                        , (7) where xPcut_m and yPcut_m – coordinates of the Pcut point in BCS general for m-position of the ISCD. Then the equation of the straight line passing through the known point Pcut along the axis of movement of the cutting tool in the current position of the ISCD (line A, Fig. 2) is calculated according to the formula (8): _ _ ( ) , Pcut m Pcut m y k x x y     (8) where k is the coeffi cient of the inclination angle of the straight line, determined by formula 9: tg . 2 m k           (9)

RkJQdWJsaXNoZXIy MTk0ODM1