Deformations in the nonstationary stage of aluminum alloy rod extrusion process with a low elongation ratio

OBRABOTKAMETALLOV Vol. 24 No. 2 2022 48 TECHNOLOGY 2. Zheng F., Chen H., Wang W., Liu R., Lian J. Effect of spinning deformation on microstructure evolution and mechanical properties of Al-Zn-Mg-Cu (7075) alloy. Journal of Materials Engineering and Performance, 2022. DOI: 10.1007/s11665-022-06705-8. 3. Dmitryuk A.I., Grigor’ev A.A. Sovershenstvovanie tekhnologii pressovaniya alyuminievykh zagotovok [Enhancement of aluminum billets extrusion technology]. Zagotovitel’nye proizvodstva v mashinostroenii = Blanking productions in mechanical engineering, 2020, vol. 18, no. 8, pp. 353–358. 4. Li F., Chu G.-n.., Liu X.-j. Deformation division of metal fl ow behavior during extrusion process of 7075 aluminum alloy. Journal of Central South University of Technology, 2009, vol. 16, pp. 738–742. DOI: 10.1007/ s11771-009-0122-3. 5. Li F., Yuan S., He Z. Effect of guiding angle on metal fl ow and defects in extrusion deformation. Cailiao Kexue yu Gongyi / Material Science and Technology, 2007, vol. 15, no. 1, pp. 15–18. 6. Berezhnoy V.L. Analiz i formalizatsiya predstavlenii o neravnomernosti deformatsii dlya tekhnologicheskogo razvitiya pressovaniya [Analysis and formalization of insights about nonuniformity of strain for technological development of extrusion]. Tekhnologiya legkikh splavov = Technology of light alloys, 2013, no. 1, pp. 40–57. 7. Yoon S.C., NagasekharA.V., Kang S.-Y., KimH.S. Plastic deformation analysis of accumulative back extrusion. International Journal of Materials Research, 2009, vol. 100 (12), pp. 1715–1719. DOI: 10.3139/146.110236. 8. Merkulova S.M., Ber L.B., Rostova T.D. Izmenenie mikrostruktury prutkov iz splava 1561 v protsesse pressovaniya c uvelichennoi sdvigovoi komponentoi [Alteration in 1561 alloy bar microstructure during extrusion process carried out with an increased shear component]. Tekhnologiya legkikh splavov = Technology of light alloys, 2015, no. 3, pp. 85–89. 9. Shcherbel R.D., Merkulova S.M. Issledovanie vozmozhnosti formirovaniya ravnomernykh po dline mekhanicheskikh svoistv krupnogabaritnykh polos iz splava MA2-1 pch pri pressovanii s malymi vytyazhkami [Investigation of the possibility of formation of uniform mechanical properties through length in large_size MA21pch alloy strips in the сase of extrusion with Low reductions]. Tekhnologiya legkikh splavov = Technology of light alloys, 2012, no. 4, pp. 103–109. 10. Kolmogorov V.L. Napryazheniya. Deformatsii. Razrushenie [Stress, Deformation. Fracture]. Moscow, Metallurgiya Publ., 1970. 229 p. 11. Loginov Yu.N., Antonenko L.V. Izuchenie napryazhenno-deformirovannogo sostoyaniya dlya preduprezhdeniya obrazovaniya prodol’nykh treshchin v pressovannykh trubakh [Research of the strain-stress state for the prevention of longitudinal splits formation in the extruded pipes]. Tsvetnye metally, 2010, no. 5, pp. 119–122. (In Russian). 12. Hawryluk M., Suliga M., Więcław M. Application of physical modeling with the use of soft model materials for the analysis and optimization of metal extrusion processes. Physical Mesomechanics, 2022, vol. 25, pp. 57–71. DOI: 10.1134/s1029959922010076. 13. Koloskov S., Sidelnikov S., Voroshilov D. Modeling process of semi-continuous extrusion of hollow 6063 aluminum alloy profi les using QForm extrusion. Solid State Phenomena, 2021, vol. 316, pp. 288–294. DOI: 10.4028/www.scientifi c.net/SSP.316.288. 14. Ershov A.A., Kotov V.V., Loginov Yu.N. Capabilities of QForm-extrusion based on an example of the extrusion of complex shapes, Metallurgist, 2012, vol. 55 (9–10), pp. 695–701. DOI: 10.1007/s11015-012-9489-8. 15. Kawałek A., Bajor T., Kwapisz M., Sawicki S., Borowski J. Numerical modeling of the extrusion process of aluminum alloy 6xxx series section. Journal of Chemical Technology and Metallurgy, 2021, vol. 56, iss. 2, pp. 375–381. 16. Mahmoodkhani Y., Wells M.A., Poole W.J. Grajales L., Parson N. The development of grain structure during axisymmetric extrusion of AA3003 aluminum alloys. Metallurgical and Materials Transactions A, 2015, vol. 46, iss. 12, pp. 5920–5932. DOI: 10.1007/s11661-015-3168-x. 17. Wu X., Zhao G., Luan Y., Ma X. Numerical simulation and die structure optimization of an aluminum rectangular hollow pipe extrusion process. Materials Science and Engineering: A, 2006, vol. 435–436, pp. 266–274. DOI: 10.1016/j.msea.2006.06.114. 18. Jiang W., Wen L., Yang H., Hu M., Song P.K.-L. Simulation study on equal channel right angular extrusion process of aluminum alloy 6061. Light Metals 2020. The Minerals, Metals and Materials Series. Cham: Springer, 2020, pp. 433–439. DOI: 10.1007/978-3-030-36408-3_61. 19. Loginov Yu.N., Polishchuk E.G., Tugbaev Yu.V. Osobennosti modelirovaniya protsessa pressovaniya trub iz splavov na osnove tsirkoniya [Features of the zirconium-based alloys tube pressing process modeling]. Tsvetnye Metally, 2018, no. 9, pp. 82–87. DOI: 10.17580/tsm.2018.09.13. (In Russian).

RkJQdWJsaXNoZXIy MTk0ODM1