Influence of boriding and aluminizing processes on the structure and properties of low-carbon steels

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 24 No. 2 2022 Phases containing aluminum, such as Al5Fe2, Na3AlF6 and Al2O3, were formed after aluminizing of the both steels. The thickness of the obtained diffusion layers on the alloy steel was less than on the carbon steel, which was due to the alloying elements inhibiting the diffusion of boron and aluminum. The maximum microhardness of 1,920 HV was observed on St3 steel after boriding, which is explained by the presence of both iron borides in its composition. The maximum value of microhardness reached 1,620 HV on 3Cr2W8V steel. The microhardness of the both steels after aluminizing was almost the same and equaled to 1,000– 1,100 HV. References 1. Voroshnin L.G., Mendeleeva O.L., Smetkin V.A. Teoriya i tekhnologiya khimiko-termicheskoi obrabotki [Theory and technology of chemical and heat treatment]. Moscow, Novoe znanie Publ., 2010. 304 p. ISBN 978-594735-149-1. 2. KulkaM. Trends in thermochemical techniques of boriding. KulkaM. Current trends in boriding: Techniques. Cham, Switzerland, Springer, 2019, pp. 17–98. DOI: 10.1007/978-3-030-06782-3_4. 3. Atul S.C., Adalarasan R., Santhanakumar M. Study on slurry paste boronizing of 410 martensitic stainless steel using taguchi based desirability analysis (TDA). International Journal of Manufacturing, Materials, and Mechanical Engineering, 2015, vol. 5, pp. 64–77. DOI: 10.4018/IJMMME.2015070104. 4. Nakajo H, Nishimoto A. Boronizing of CoCrFeMnNi high-entropy alloys using spark plasma sintering. Journal of Manufacturing and Materials Processing, 2022, vol. 6, p. 29. DOI: 10.3390/jmmp6020029. 5. Campos-Silva I.E., Rodriguez-Castro G.A. Boriding to improve the mechanical properties and corrosion resistance of steels. Thermochemical Surface Engineering of Steels, 2015, vol. 62, pp. 651–702. DOI: 10.1533/9 780857096524.5.651. 6. Salem M., Le Roux S., Dour G., Lamesle P., Choquet K., Rézaï-Aria F. Effect of aluminizing and oxidation on the thermal fatigue damage of hot work tool steels for high pressure die casting applications. International Journal of Fatigue, 2019, vol. 119, pp. 126–138. DOI: 10.1016/j.ijfatigue.2018.09.018. 7. Sun Y., Dong J., Zhao P., Dou B. Formation and phase transformation of aluminide coating prepared by lowtemperature aluminizing process. Surface and Coatings Technology, 2017, vol. 330, pp. 234–240. DOI: 10.1016/j. surfcoat.2017.10.025. 8. Shin V.I., Moskvin P.V., Vorobyev M.S., Devyatkov V.N., Doroshkevich S.Yu., Koval’ N.N. Povyshenie elektricheskoi prochnosti uskoryayushchego zazora v istochnike elektronov s plazmennym katodom [Increasing the electrical strength of the accelerating gap in an electron source with a plasma cathode]. Pribory i tekhnika eksperimenta = Instruments and Experimental Techniques, 2021, no. 2, pp. 69–75. DOI: 10.31857/ S0032816221020191. 9. Ivanov Yu.F., Koval’ N.N., Petrikova E.A., Krysina O.V., Shugurov V.V., Akhmadeev Yu.Kh., Lopatin I.V., Teresov A.D., Tolkachev O.S. Razrabotka fi zicheskikh osnov kompleksnogo elektronno-ionno-plazmennogo inzhiniringa poverkhnosti materialov i izdelii [Development of the physical foundations of complex electronion-plasma engineering of the surface of materials and products]. Naukoemkie tekhnologii v proektakh RNF. Sibir’ [High technologies in RSF projects. Siberia]. Tomsk, NTL Publ., 2017, ch. 1, pp. 5–35. ISBN 978-589503-607-5. 10. Koval’N.N., IvanovYu.F., eds. Evolyutsiya struktury poverkhnostnogo sloya stali, podvergnutoi elektronnoionno-plazmennym metodam obrabotki [Evolution of the structure of the surface layer of steel subjected to electronion-plasma processing methods]. Tomsk, NTL Publ., 2016. 298 p. ISBN 978-5-89503-577-1. 11. Sizov I.G., Smirnyagina N.N., Semenov A.P. The structure and properties of boride layers obtained as a result of electron-beam chemical-thermal treatment. Metal Science and Heat Treatment, 2001, vol. 11, pp. 45–46. 12. Zenker R. Electron beam surface technologies. Encyclopedia of Tribology. Wang Q.J, Chung Y.-W. (Eds.). Boston, MA, Springer, 2013. DOI: 10.1007/978-0-387-92897-5_723. 13. Bartkowska A., Bartkowski D., Przestacki D., Hajkowski J., Miklaszewski A. Microstructural and mechanical properties of B-Cr coatings formed on 145Cr6 tool steel by laser remelting of diffusion borochromized layer using diode laser. Coatings, 2021, vol. 11, p. 608. DOI: 10.3390/coatings11050608. 14. Mishigdorzhiyn U., Chen Y., Ulakhanov N., Liang H. Microstructure and wear behavior of tungsten hotwork steel after boriding and boroaluminizing. Lubricants, 2020, vol. 8, iss. 3, p. 26. DOI: 10.3390/ lubricants8030026.

RkJQdWJsaXNoZXIy MTk0ODM1