Numerical analysis of the process of electron beam additive deposition with vertical feed of wire material

OBRABOTKAMETALLOV Vol. 24 No. 3 2022 20 TECHNOLOGY References 1. Taminger K.M., Hafl ey R.A. Electron beam freeform fabrication (EBF3) for cost effective near-net shape manufacturing. NASA technical memorandum. NASA/TM-2006-214284URL. Hampton, VA, National Aeronautics and Space Administration, Langley Research Center, 2006. Available at: https://ntrs.nasa.gov/citations/20060009152 (accessed 23.06.2022). 2. Stecker S. Electron beam layer manufacturing. Patent US, no. 2016/0288244 A1, 2016. 3. Taminger K.M., Domack C.S., Zalameda J.N., Taminger B.L., Hafl ey R.A., Burke E.R. In-process thermal imaging of the electron beam freeform fabrication process. Proceedings of SPIE – The International Society for Optical Engineering, 2016, vol. 9861, p. 986102. DOI: 10.1117/12.2222439. 4. Fuchs J., Schneider C., Enzinger N. Wire-based additive manufacturing using an electron beam as heat source. Welding in the World, 2018, vol. 62, pp. 267–275. DOI: 10.1007/s40194-017-0537-7. 5. Gudenko A.V., Sliva A.P., Dragunov V.K., Shcherbakov A.V. Osobennosti formirovaniya izdelii metodom elektronno-luchevoi naplavki [Features of the formation of products by electron-beam surfacing]. Svarochnoe proizvodstvo = Welding International, 2018, no. 8, pp. 12–19. (In Russian). 6. Taminger K.M., Hafl ey R.A., Fahringer D.T., Martin R.E. Effect of surface treatments on electron beam freeform fabricated aluminum structures. 2004 International Solid Freeform Fabrication Symposium, Austin, TX, 2004, pp. 460–470. DOI: 10.26153/tsw/7012. 7. AWS C7.1M/C7.1:2013. Recommended practices for electron beam welding and allied processes. American Welding Society, 2013. 150 p. ISBN 0-87171-721-2. 8. Bird R.K., Atherton T.S. Effect of orientation on tensile properties of Inconel 718 block fabricated with electron beam freeform fabrication (EBF3). NASA Technical Memorandum. NASA/TM-2010-216719. Hampton, VA, National Aeronautics and Space Administration, Langley Research Center, 2010. Available at: https://ntrs.nasa.gov/ citations/20100025706 (accessed 23.06.2022). 9. Wang L., Felicelli S.D., Coleman J., Johnson R., Taminger K.M.B., Lett R.L. Microstructure and mechanical properties of electron beam deposits of AISI 316L stainless steel. Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. Vol. 3: Design and Manufacturing, Denver, Colorado, USA, 2011, pp. 15–21. DOI: 10.1115/IMECE2011-62445. 10. Ivanchenko V.G., Ivasishin O.M., Semiatin S.L. Evaluation of evaporation losses during electron-beam melting of Ti-Al-V alloys. Metallurgical and Materials Transactions B, 2003, vol. 34 (6), pp. 911–915. DOI: 10.1007/ s11663-003-0097-7. 11. Wang Y., Fu P., Guan Y., Lu Z., Wei Y. Research on modeling of heat source for electron beam welding fusionsolidifi cation zone. Chinese Journal of Aeronautics, 2013, vol. 26 (1), pp. 217–223. DOI: 10.1016/j.cja.2012.12.023. 12. Chowdhury S., Nirsanametla Y., Muralidhar M. Studies on heat transfer analysis of Ti2AlNb electron beam welds using hybrid volumetric heat source. Proceedings of the International Congress 2017 of the International Institute of Welding, 07–09 December 2017, Chennai, India, 2017. 13. Trushnikov D., Perminov A., Belenkiy V., Permyakov G., Kartashov M., Matveev E., Dushina A., Schitsyn Y., Pang S., Karunakaran K.P. Modelling of heat and mass transfer for wire-based additive manufacturing using electric arc and concentrated sources of energy. International Journal of Engineering and Technology, 2018, vol. 7, no. 4.38, pp. 741–747. DOI: 10.14419/ijet.v7i4.38.25777. 14. Mladenov G.M., Koleva E.G., Trushnikov D.N. Mathematical modelling for energy beam additive manufacturing. Journal of Physics: Conference Series, 2018, vol. 1089, art. 012001. DOI: 10.1088/1742-6596/1089/1/012001. 15. Trushnikov D.N., Permyakov G.L., Varushkin S.V., Davlyatshin R.V., Bayandin Y.V., Pang S. Improving the electron-beam additive manufacturing growth of components. Russian Engineering Research, 2021, vol. 41, no. 9, pp. 874–876. DOI: 10.3103/S1068798X21090276. Translated from STIN, 2021, no. 6, pp. 38–40. 16. Brackbill J., Kothe D. Dynamic modeling of the surface tension. Proceedings of the Third Microgravity Fluid Physics Conference, Cleveland, OH, NASA Lewis Research Center, 1996, pp. 693–698. 17. Anisimov S.I., Khokhlov V.A. Instabilities in laser-matter interaction. Boca Raton, FL, CRC Press, 1995. 141 p. ISBN 0-8493-8660-8. 18. Cho J.-H., Farson D.F., Milewski J.O., Hollis K.J. Weld pool fl ows during initial stages of keyhole formation in laser welding. Journal of Physics D: Applied Physics, 2009, vol. 42, no. 17. DOI: 10.1088/0022-3727/42/17/175502. 19. Khairallah S.A., Anderson A.T., Rubenchik A., King W.E. Laser powder-bed fusion additive manufacturing: Physics of complex melt fl ow and formation mechanisms of pores, spatter and denudation zones. Acta Materialia, 2016, vol. 108 (16), pp. 36–45. DOI: 10.1016/j.actamat.2016.02.014.

RkJQdWJsaXNoZXIy MTk0ODM1