Modeling of sliding wear characteristics of Polytetrafluoroethylene (PTFE) composite reinforced with carbon fiber against SS304

OBRABOTKAMETALLOV TECHNOLOGY Vol. 24 No. 3 2022 8. Gujrathi S.M., Dhamande L.S., Patare P.M. Wear studies on polytetrafl uroethylene (PTFE) composites: Taguchi approach. Bonfring International Journal of Industrial Engineering and Management Science, 2013, vol. 3, no. 2, pp. 47–51. DOI: 10.9756/BIJIEMS.4406. 9. Shen J.T., Top M., Pei Y.T., Hosson M. Wear and friction performance of PTFE fi lled epoxy composites with a high concentration of SiO2 particles. Wear, 2015, vol. 322–323, no. 15, pp. 171–180. DOI: 10.1016/j. wear.2014.11.015. 10. Shen M., Li B., Zhang Z., Zhao L. Abrasive wear behavior of PTFE for seal applications under abrasiveatmosphere sliding condition. Friction, 2020, vol. 8, pp. 755–767. DOI: 10.1007/s40544-019-0301-7. 11. Sawyer W.G., Freudenberg K.D., Bhimaraj P., Schadler L.S. A study on the friction and wear behavior of PTFE fi lled with alumina nanoparticles. Wear, 2003, vol. 254, pp. 573–580. DOI: 10.1016/S0043-1648(03)00252-7. 12. Kim D.W, Kim K.W. Effects of sliding velocity and normal load on friction and wear characteristics of multi-layered diamond-like carbon (DLC) coating prepared by reactive sputtering. Wear, 20013, vol. 297, no. 1–2, pp. 722–730. DOI: 10.1016/j.wear.2012.10.009. 13. Wang M., Zhang C., Wang X. The wear behavior of textured steel sliding against polymers. Materials, 2017, vol. 10, no. 330, pp. 1–14. DOI: 10.3390/ma10040330. 14. Desale D.D., Pawar H.B. Performance analysis of Polytetrafl uoroethylene as journal bearing material. Procedia Manufacturing, 2018, vol. 20, pp. 414–419. DOI: 10.1016/j.promfg.2018.02.060 15. Ibrahim M.A., Şahin Y., Ibrahim A., Gidado A.Y., Yahya M.N. Specifi c wear rate modeling of polytetrafl ouroethylene composites via artifi cial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS) tools. Virtual Assistant, IntechOpen, 2021. DOI: 10.5772/intechopen.95242. 16. Paturi U.M., Cheruku S., Reddy N.S. The role of artifi cial neural networks in prediction of mechanical and tribological properties of composites – A comprehensive review. Archives of Computational Methods in Engineering, 2022, vol. 29, pp. 1–41. DOI: 10.1007/s11831-021-09691-7. 17. Mahmood M.A., VisanA.I., Ristoscu C., Mihailescu I.N. Artifi cial neural network algorithms for 3D printing. Materials, 2020, vol. 14, no. 1, p. 163. DOI: 10.3390/ma14010163. 18. Naderpour H., Kheyroddin A., Amiri G.G. Prediction of FRP-confi ned compressive strength of concrete using artifi cial neural networks. Composite Structures, 2010, vol. 92, no. 12, pp. 2817–2829. DOI: 10.1016/j. compstruct.2010.04.008. Confl icts of Interest The author declare no confl ict of interest.  2022 The Author. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

RkJQdWJsaXNoZXIy MTk0ODM1