OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 24 No. 3 2022 Ta b l e 2 Dimensions of the strip section, deformation and hardness during rolling with current Pass No. Initial section, mm Final section, mm Engineering deformation ratio, % True deformation, е HV Without rolling 2.0 × 6.0 2.0 × 6.0 0 0 310 1–36 2.0 × 6.0 1.15 × 7.1 42.5 0.39 340 37–60 1.15 × 7.1 0.62 × 8.3 69.0 0.85 385 60–84 0.62 × 8.3 0.30 × 9.2 85.0 1.47 490 Conclusions 1. Flat rolling of the TiNiHf SMA strip with a thickness of 2 mm at room temperature under a pulse current with the density of more than 200 A/mm2 allows accumulating the maximum value of true strain e = 1.47 without bulk destruction. 2. The absence of noticeable structural-phase changes and the observed deformation hardening indicate a non-thermal effect of the current in the signifi cant increase of the deformability. References 1. Troitskii O.A., Baranov Yu.V., Avramov Yu.S., Shlyapin A.D. Fizicheskie osnovy i tekhnologii obrabotki sovremennykh materialov (teoriya, tekhnologiya, struktura i svoistva). V 2 t. T. 1 [Physical foundations and technologies for processing modern materials (theory, technology, structure and properties). In 2 vols. Vol. 1]. Izhevsk, Instite of Computer Technologies Publ., 2004. 590 p. 2. Gurtovaya I.B., Inaekyan K. E., Korotitskii A.V., Ugurchiev U.Kh., Makushev S.Yu., Khmelevskaya I.Yu., Danilova E.S., SergeevaA.E., Stolyarov V.V., Prokoshkin S.D. Vliyanie rezhimov elektroplasticheskoi deformatsii na deformiruemost’ i funktsional’nye svoistva splava Ti-Ni s pamyat’yu formy [Infl uence of electroplastic deformation modes on deformability and functional properties of Ti-Ni shape memory alloy]. Zhurnal funktsional’nykh materialov = Journal of functional materials, 2008, vol. 2, no. 4, pp. 130–137. 3. Potapova A.A., Stolyarov V.V., Bondarev A.B., Andreev V.A. Issledovanie vozmozhnosti primeneniya elektroplasticheskoi prokatki dlya polucheniya prutkov iz splava TiNi [Investigation of the possibility of using electroplastic rolling to obtain bars from the TiNi alloy]. Mashinostroenie i inzhenernoe obrazovanie = Mechanical Engineering and Engineering Education, 2012, no. 2, pp. 33–38. 4. Medentsov V.E., Stolyarov V.V. Osobennosti deformirovaniya, struktura i mekhanicheskie svoistva splava VT6 pri elektroplasticheskoi prokatke [Peculiarities of deformation, structure and mechanical properties of VT6 alloy during electroplastic rolling]. Deformatsiya i razrushenie materialov = Deformation and Fracture of Materials, 2012, no. 12, pp. 37–41. 5. Brodova I.G., Shirinkina I.G., Astaf’ev V.V., Yablonskikh T.I., Potapova A.A., Stolyarov V.V. Effect of pulsed current on structure of Al–Mg–Si aluminum-based alloy during cold deformation. Physics of Metals and Metallography, 2013, vol. 114 (11), pp. 940–946. DOI: 10.1134/S0031918X13110021. 6. Ivanov A.M., Ugurchiev U.Kh., Stolyarov V.V., Petrova N.D., Platonov A.A. Kombinirovanie metodov intensivnoi plasticheskoi deformatsii konstruktsionnykh stalei [Combination of severe plastic deformation methods of structure steels]. Izvestiya vysshikh uchebnykh zavedenii. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy, 2012, no. 6, pp. 54–57. 7. Xu Z., Tang G., Tian S., Ding F., Tian H. Research of electroplastic rolling of AZ31 Mg alloy strip. Journal of Materials Processing Technology, 2007, vol. 182 (1–3), pp. 128–133. DOI: 10.1016/j.jmatprotec.2006.07.019. 8. Qian L., Zhan L., Zhou B., Zhang X., Liu S., Lv Z. Effects of electroplastic rolling on mechanical properties and microstructure of low-carbon martensitic steel. Materials Science and Engineering: A, 2021, vol. 812, p. 141144. DOI: 10.1016/j.msea.2021.141144. 9. Zhu R.F., Tang G.Y., Shi S.Q., Fu M.W. Effect of electroplastic rolling on the ductility and superelasticity of TiNi shape memory alloy. Materials and Design, 2013, vol. 44, pp. 606–611. DOI: 10.1016/j.matdes.2012.08.045. 10. Guan L., Tang G., Chu P.K. Recent advances and challenges in electroplastic manufacturing processing of metals. Journal of Materials Research, 2010, vol. 25 (7), pp. 1215–1224. DOI: 10.1557/JMR.2010.0170.
RkJQdWJsaXNoZXIy MTk0ODM1