Comparison of approaches based on the Williamson-Hall method for analyzing the structure of an Al0.3CoCrFeNi high-entropy alloy after cold deformation

OBRABOTKAMETALLOV MATERIAL SCIENCE Vol. 24 No. 3 2022 5. Gromov V.E., Konovalov S.V., Ivanov Yu.F., Osintsev K.A. Structure and properties of high-entropy alloys. Berlin, Springer, 2021. 110 p. 6. Tang Q.H., Huang Y., Huang Y.Y., Liao X.Z., Langdon T.G., Dai P.Q. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Materials Letters, 2015, vol. 151, pp. 126–129. DOI: 10.1016/j.matlet.2015.03.066. 7. Sourav A., Yebaji S., Thangaraju S. Structure-property relationships in hot forged AlxCoCrFeNi high entropy alloys. Materials Science and Engineering A, 2020, vol. 793, pp. 139–877. DOI: 10.1016/j.msea.2020.139877. 8. Ma Y., Jiang B., Li C., Wang Q., Dong C., Liaw P.K., Xu F., Sun L. The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys. Metals, 2017, vol. 7 (2). DOI: 10.3390/met7020057. 9. Zhu Z., Yang T., Shi R., Quan X., Zhang J., Qiu R., Song B., Liu Q. The effects of annealing at different temperatures on microstructure and mechanical properties of cold-rolled Al0.3CoCrFeNi high-entropy alloy. Metals, 2021, vol. 11 (6). DOI: 10.3390/met11060940. 10. Ashiotis G., Deschildre A., Nawaz Z., Wright J.P., Karkoulis D., Picca F.E., Kieffer J. The fast azimuthal integration Python library: pyFAI. Journal of Applied Crystallography, 2015, vol. 48 (2), pp. 510–519. 11. Forouzanmehr N., Nili M., Bönisch M. The analysis of severely deformed pure Fe structure aided by Xray diffraction profi le. The Physics of Metals and Metallography, 2016, vol. 117 (6), pp. 624–633. DOI: 10.1134/ S0031918X16060077. 12. Ungár T., Holden T.M., Jóni B., Clausen B., Balogh L., Csiszár G., Brown D.W. Dislocation structure in different texture components determined by neutron diffraction line profi le analysis in a highly textured Zircaloy-2 rolled plate. Journal of Applied Crystallography, 2015, vol. 48, pp. 409–417. DOI: 10.1107/S160057671500133. 13. Gubicza J. X-ray line profi le analysis in materials science. Hershey, PA, Engineering Science Reference, an imprint of IGI global, 2014. 343 p. 14. Ungár T., Ott S., Sanders P.G., Borbély A., Weertman J.R. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profi le analysis. Acta Materialia, 1998, vol. 46, no. 10, pp. 3693–3699. 15. Ivanov I.V., Lazurenko D.V., Stark A., Pyczak F., Thömmes A., Bataev I.A. Application of different diffraction peak profi le analysis methods to study the structure evolution of cold-rolled hexagonal α-titanium. Metals and Materials International, 2020, vol. 26 (1), pp. 83–93. DOI: 10.1007/s12540-019-00309-z. 16. Ungár T., Dragomir I., Révész Á., Borbély A. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. Journal of Applied Crystallography, 1999, vol. 32, pp. 992–1002. 17. Ungár T., Borbély A. The effect of dislocation contrast on x-ray line broadening: a new approach to line profi le analysis. Applied Physics Letters, 1996, vol. 69 (21), pp. 3173–3175. 18. Dragomir I.C., Ungár T. Contrast factors of dislocations in the hexagonal crystal system. Journal of Applied Crystallography, 2002, vol. 35 (5), pp. 556–564. 19. Ungár T. Dislocation model of strain anisotropy. Powder Diffraction, 2008, vol. 23 (2), pp. 125–132. DOI: 10.1154/1.2918549. 20. Shao Q.Q., Liu L.H., Fan T.W., Yuan D.W., Chen J.H. Effects of solute concentration on the stacking fault energy in copper alloys at fi nite temperatures. Journal of Alloys and Compounds, 2017, vol. 726, pp. 601–607. 21. Yu P., Feng R., Du J., Shinzato S., Chou J.P., Chen B., LoY.C., Liaw P.K., Ogata S., HuA. Phase transformation assisted twinning in a face-centered-cubic FeCrNiCoAl0.36 high entropy alloy. Acta Materialia, 2019, vol. 181, pp. 491–500. DOI: 10.1016/j.actamat.2019.10.012. 22. Li Z., Zhao S., Diao H., Liaw P.K., Meyers M.A. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure. Scientifi c Reports, 2017, art. 42742, pp. 1–8. DOI: 10.1038/srep42742. 23. Schafl er E., Zehetbauer M., Ungàr T. Measurement of screw and edge dislocation density by means of X-ray Bragg profi le analysis. Materials Science and Engineering A, 2001, vol. 321, pp. 220–223. DOI: 10.1016/S09215093(01)00979-0. 24. Fátay D., Bastarash E., Nyilas K., Dobatkin S., Gubicza J., Ungár T. X-ray diffraction study on the microstructure of anAl-Mg-Sc-Zr alloy deformed by high-pressure torsion. Zeitschrift Fuer Metallkunde = Materials Research and Advanced Techniques, 2003, vol. 94 (7), pp. 842–847. DOI: 10.3139/146.030842. Confl icts of Interest The authors declare no confl ict of interest.  2022 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

RkJQdWJsaXNoZXIy MTk0ODM1