Development of plasma cutting technique for C1220 copper, AA2024 aluminum alloy, and Ti-1,5Al-1,0Mn titanium alloy using a plasma torch with reverse polarity

ОБРАБОТКА МЕТАЛЛОВ Том 24 № 4 2022 48 ТЕХНОЛОГИЯ По результатам работы можно сделать вывод, что плазменная резка на токах обратной полярности является эффективной для резки проката больших толщин, однако методика требует дальнейшей отработки с целью повышения качества получаемого реза. В дальнейших работах планируется проведение сравнительных исследований в области плазменной резки листового проката больших толщин с использованием плазмотронов с прямой и обратной полярностью. Список литературы 1. Akkurt A. The effect of cutting process on surface microstructure and hardness of pure and Al 6061 aluminium alloy // Engineering Science and Technology, an International Journal. – 2015. – Vol. 18, iss. 3. – P. 303–308. – DOI: 10.1016/j.jestch.2014.07.004. 2. Ilii S.M., Coteata M. Plasma arc cutting cost // International Journal of Material Forming. – 2009. – Vol. 2. – P. 689–692. – DOI: 10.1007/s12289-009-0588-4. 3. Optimization of surface roughness in plasma arc cutting of AISID2 steel using TLBO / P. Patel, B. Nakum, K. Abhishek, V. Rakesh Kumar, A. Kumar // Materials Today: Proceedings. – 2018. – Vol. 5, iss. 9 (3). – P. 18927–18932. – DOI: 10.1016/j.matpr.2018.06.242. 4. Experimental study of the features of the kerf generated by a 200A high tolerance plasma arc cutting system / R. Bini, B.M. Colosimo,A.E. Kutlu,M.Monno // Journal of Materials Processing Technology. – 2008. – Vol. 196, iss. 1–3. – P. 345–355. – DOI: 10.1016/j. jmatprotec.2007.05.061. 5. Hoult A.P., Pashby I.R., Chan K. Fine plasma cutting of advanced aerospace materials // Journal of Materials Processing Technology. – 1995. – Vol. 48, iss. 1–4. – P. 825–831. – DOI: 10.1016/09240136(94)01727-I. 6. Modeling of surface roughness in plasma jet cutting process of thick structural steel / I. Peko, B. Nedic, A. Djordjevic, D. Dzunic, M. Janković, I. Veza // Tribology in Industry. – 2016. – Vol. 38, № 4. – P. 522–529. 7. Characterization of heat affected zones produced by thermal cutting processes by means of Small Punch tests / D. Andrés, T. García, S. Cicero, R. Lacalle, J.A. Álvarez, A. Martín-Meizoso, J. Aldazabal, A. Bannister, A. Klimpel // Materials Characterization. – 2016. – Vol. 119. – P. 55–64. – DOI: 10.1016/j. matchar.2016.07.017. 8. Gariboldi E., Previtali B. High tolerance plasma arc cutting of commercially pure titanium // Journal of Materials Processing Technology. – 2005. – Vol. 160, iss. 1. – P. 77–89. – DOI: 10.1016/j. jmatprotec.2004.04.366. 9. Nandan Sharma D., Ram Kumar J. Optimization of dross formation rate in plasma arc cutting process by response surface method // Materials Today: Proceedings. – 2020. – Vol. 32, pt. 3. – P. 354–357. – DOI: 10.1016/j.matpr.2020.01.605. 10. An experimental analysis of cutting quality in plasma arc machining / M. Gostimirović, D. Rodic, M. Sekulić, A. Aleksic // Advanced Technologies and Materials. – 2020. – Vol. 45, N 1. – P. 1–8. – DOI: 10.24867/ATM-2020-1-001. 11. Plasma arc cutting dimensional accuracy optimization employing the parameter design approach / J. Kechagias, M. Petousis, N. Vidakis, N. Mastorakis // ITMWeb of Conferences. – 2017. – Vol. 9. – P. 03004. – DOI: 10.1051/itmconf/20170903004. 12. Cinar Z., Asmael M., Zeeshan Q. Developments in plasma arc cutting (PAC) of steel alloys: a review // Jurnal Kejuruteraan. – 2018. – Vol. 30. – P. 7–16. – DOI: 10.17576/jkukm-2018-30(1)-02. 13. KudrnaL., Fries J.,MertaM. Infl uencesonplasma cutting quality on CNC machine // Multidisciplinary Aspects of Production Engineering. – 2019. – Vol. 2. – P. 108–117. – DOI: 10.2478/mape-2019-0011. 14. Влияние конструктивных особенностей плазмотрона на качество реза при прецизионной воздушно-плазменной разделке металла / С.В. Анахов, Б.Н. Гузанов, А.В. Матушкин, Н.Б. Пугачева, Ю.А. Пыкин // Известия высших учебных заведений. Черная металлургия. – 2020. – Т. 63, № 2. – С. 155– 162. – DOI: 10.17073/0368-0797-2020-2-155-162. 15. Modeling and optimization of cut quality responses in plasma jet cutting of aluminium alloy EN AW-5083 / I. Peko, D. Marić, B. Nedić, I. Samardžić // Materials. – 2021. – Vol. 14, iss. 19. – P. 5559. – DOI: 10.3390/ma14195559. 16. Salonitis K., Vatousianos S. Experimental Investigation of the Plasma Arc Cutting Process // Procedia CIRP. – 2012. – Vol. 3. – P. 287–292. – DOI: 10.1016/j.procir.2012.07.050. 17. Suresh A., Diwakar G. Optimization of process parameters in plasma arc cutting for TWIP steel plates // Materials Today: Proceedings. – 2021. – Vol. 38, pt. 5. – P. 2417–2424. – DOI: 10.1016/j.matpr.2020.07.383. 18. Nemchinsky V. Erosion of thermionic cathodes in welding and plasma arc cutting systems // IEEE Transactions on Plasma Science. – 2014. – Vol. 42, N 1. – P. 199–215. – DOI: 10.1109/TPS.2013.2287794. 19. Matushkina I., Anakhov S., Pyckin Yu. Design of a new gas-dynamic stabilization system for a metal-cutting plasma torch // Journal of Physics: Conference Series. – 2021. – Vol. 2094. – P. 042075. – DOI: 10.1088/17426596/2094/4/042075. 20. Shchitsyn V.Yu., Yazovskikh V.M. Effect of polarity on the heat input into the nozzle of a plasma

RkJQdWJsaXNoZXIy MTk0ODM1