Development of plasma cutting technique for C1220 copper, AA2024 aluminum alloy, and Ti-1,5Al-1,0Mn titanium alloy using a plasma torch with reverse polarity

OBRABOTKAMETALLOV technology Vol. 24 No. 4 2022 T h e e n d Ta b l e 2 Change in cut quality indicators depending on plasma cutting modes Alloy S, mm Mode No. Roughnesses, µm Macrogeometry distortion, mm Depth of the heat-affected zone, mm** C1220 40 2 – – 0.8–0.9 C1220 40 3 – – 0.65–0.75 C1220 40 4 80–180 1.2–1.4 2.8–3.0 C1220 40 5 25–75 0.5–0.7 1.9–2.0 C1220 40 6 7–65 1.0–1.2 2.7–3.0 C1220 40 7* 45–200 0.9–1.0 1.8–1.9 * The most optimal plasma cutting modes ** In this case, the depth of the thermal influence zone and the melting zone are included Based on the results of the work, it can be concluded that plasma cutting at reverse polarity currents is effective for cutting rolled products of large thicknesses; however, the method requires further development in order to improve the quality of the resulting cut. In the future, it is planned to conduct comparative studies in the field of plasma cutting of rolled sheets of large thicknesses using plasma torches with forward and reverse polarity. References 1. Akkurt A. The effect of cutting process on surface microstructure and hardness of pure and Al 6061 aluminium alloy. Engineering Science and Technology, an International Journal, 2015, vol. 18, iss. 3, pp. 303–308. DOI: 10.1016/j. jestch.2014.07.004. 2. Ilii S.M., Coteata M. Plasma arc cutting cost. International Journal of Material Forming, 2009, vol. 2, pp. 689– 692. DOI: 10.1007/s12289-009-0588-4. 3. Patel P., Nakum B., Abhishek K., Rakesh Kumar V., Kumar A. Optimization of surface roughness in plasma arc cutting of AISID2 steel using TLBO. Materials Today: Proceedings, 2018, vol. 5, iss. 9 (3), pp. 18927–18932. DOI: 10.1016/j.matpr.2018.06.242. 4. Bini R., Colosimo B.M., Kutlu A.E., Monno M. Experimental study of the features of the kerf generated by a 200A high tolerance plasma arc cutting system. Journal of Materials Processing Technology, 2008, vol. 196, iss. 1–3, pp. 345–355. DOI: 10.1016/j.jmatprotec.2007.05.061. 5. Hoult A.P., Pashby I.R., Chan K. Fine plasma cutting of advanced aerospace materials. Journal of Materials Processing Technology, 1995, vol. 48, iss. 1–4, pp. 825–831. DOI: 10.1016/0924-0136(94)01727-I. 6. Peko I., Nedic B., Djordjevic A., Dzunic D., Janković M., Veza I. Modeling of surface roughness in plasma jet cutting process of thick structural steel. Tribology in Industry, 2016, vol. 38, no. 4, pp. 522–529. 7. Andrés D., García T., Cicero S., Lacalle R., Álvarez J.A., Martín-Meizoso A., Aldazabal J., Bannister A., Klimpel A. Characterization of heat affected zones produced by thermal cutting processes by means of Small Punch tests. Materials Characterization, 2016, vol. 119, pp. 55–64. DOI: 10.1016/j.matchar.2016.07.017. 8. Gariboldi E., Previtali B. High tolerance plasma arc cutting of commercially pure titanium. Journal of Materials Processing Technology, 2005, vol. 160, iss. 1, pp. 77–89. DOI: 10.1016/j.jmatprotec.2004.04.366. 9. Nandan Sharma D., RamKumar J. Optimization of dross formation rate in plasma arc cutting process by response surface method. Materials Today: Proceedings, 2020, vol. 32, pt. 3, pp. 354–357. DOI: 10.1016/j.matpr.2020.01.605. 10. Gostimirović M., Rodic D., Sekulić M., Aleksic A. An experimental analysis of cutting quality in plasma arc machining. Advanced Technologies and Materials, 2020, vol. 45, no. 1, pp. 1–8. DOI: 10.24867/ATM-2020-1-001. 11. Kechagias J., Petousis M., Vidakis N., Mastorakis N. Plasma arc cutting dimensional accuracy optimization employing the parameter design approach. ITM Web of Conferences, 2017, vol. 9, p. 03004. DOI: 10.1051/ itmconf/20170903004. 12. Cinar Z., Asmael M., Zeeshan Q. Developments in plasma arc cutting (PAC) of steel alloys: a review. Jurnal Kejuruteraan, 2018, vol. 30, pp. 7–16. DOI: 10.17576/jkukm-2018-30(1)-02. 13. Kudrna L., Fries J., Merta M. Influences on plasma cutting quality on CNC machine. Multidisciplinary Aspects of Production Engineering, 2019, vol. 2, pp. 108–117. DOI: 10.2478/mape-2019-0011.

RkJQdWJsaXNoZXIy MTk0ODM1