Formation features of a welding joint of alloy Ti-5Al-3Mo-1V by the friction stir welding using heat-resistant tool from ZhS6 alloy

OBRABOTKAMETALLOV Vol. 24 No. 4 2022 61 TECHNOLOGY M. Jiang, L. Zhou, F. Gao // Wear. – 2022. – Vol. 488– 489. – P. 204180. – DOI: 10.1016/j.wear.2021.204180. 20. Vardak S., Shatooti S., ZangenehS. Manufacturing of porous titanium using friction stir welding // Materials Letters. – 2022. –Vol. 310. – P. 131430. – DOI: 10.1016/j. matlet.2021.131430. 21. Evolution of microstructure and texture in the stir zone of commercially pure titanium during friction stir processing / A. Kumar Singh, L. Kaushik, J. Singh, H. Das, M. Mondal, S.-T. Hong, S.-H. Choi // International Journal of Plasticity. – 2022. – Vol. 150. – P. 103184. – DOI: 10.1016/j.ijplas.2021.103184. Конфликт интересов Авторы заявляют об отсутствии конфликта интересов.  2022 Авторы. Издательство Новосибирского государственного технического университета. Эта статья доступна по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (https://creativecommons.org/licenses/by/4.0/) 22. Wear of ZhS6U nickel superalloy tool in friction stir processing on commercially pure titanium / A. Amirov, A. Eliseev, E. Kolubaev, A. Filippov, V. Rubtsov // Metals. – 2020. – Vol. 10 (6). – P. 799. – DOI: 10.3390/met10060799. 23. Amirov A.I., Chumaevskii A.V., Vorontsov A.V. Formation of (α + β) titanium welds by friction stir welding using heat-resistant alloy tool // AIP Conference Proceedings. – 2020. – Vol. 2310 (1). – P. 020017. – DOI: 10.1063/5.0034654.

RkJQdWJsaXNoZXIy MTk0ODM1