Application of the synergistic concept in determining the CNC program for turning

OBRABOTKAMETALLOV Vol. 24 No. 4 2022 107 EQUIPMENT. INSTRUMENTS 2021. – № 1 (22). – С. 56–59. – DOI: 10.22184/24999407.2021.22.1.56.58. 14. Virtual machine tool / Y. Altintas, C. Brecher, M. Weck, S. Witt // CIRPAnnals. – 2005. – Vol. 54 (2). – P. 115–138. – DOI: 10.1016/S0007-8506(07)60022-5. 15. Erkorkmaz K., Altintas Y., Yeung C-H. Virtual computer numerical control system // CIRP Annals. – 2006. – Vol. 55 (1). – P. 399–402. – DOI: 10.1016/ S0007-8506(07)60444-2. 16. Complexity-based analysis of the infl uence of machining parameters on the surface fi nish of drilled holes in drilling operation / As. Ahamed, At. Ahamed, D. Katuwawala, T.T. Ee, Z.H. Tan, I.S. Bajaj, Th. Wickramasurendra, H. Namazi // Fractals. – 2019. – Vol. 27 (6). – P. 1950087. – DOI: 10.1142/S0218348X19500877. 17. Kilic Z.M., Altintas Y. Generalized mechanics and dynamics of metal cutting operations for unifi ed simulations // International Journal of Machine Tools and Manufacture. – 2016. – Vol. 104. – P. 1–13. – DOI: 10.1016/j. ijmachtools.2016.01.006. 18. Development of machining strategies for aerospace components, using virtual machining tools / L. Estman, D. Merdol, K.-G. Brask, V. Kalhori, Y. Altintas // New Production Technologies in Aerospace Industry. – Cham: Springer, 2014. – P. 63–68. – (Lecture Notes in Production Engineering). – DOI: 10.1007/978-3-31901964-2_9. 19. Infl uence of cutting and geometrical parameters on the cutting force in milling / H. Yangui, B. Zghal, A. Kessentini, G. Chevallier, A. Rivière, M. Haddar, Ch. Karra // Engineering. – 2010. – Vol. 2 (10). – P. 751– 761. – DOI: 10.4236/eng.2010.210097. 20. Thasana W., Chianrabutra S. A comparison between simulation and experiment of virtual machining in CNC turning machine considering kinematic motion deviations, tool wear and workpiece defl ection errors // Journal of Advanced Mechanical Design, Systems and Manufacturing. – 2019. – Vol. 13 (1). – P. 18-00250. – DOI: 10.1299/jamdsm.2019jamdsm0009. 21. A study on estimation of three-dimensional tolerances based on simulation of virtual machining in turning processes including kinematic motion deviations / W. Thasana, N. Sugimura, K. Iwamura, Y. Tanimizu // Journal of Advanced Mechanical Design, Systems, and Manufacturing. – 2015. – Vol. 9 (1). – P. 14-00507. – DOI: 10.1299/jamdsm.2015jamdsm0012. 22. Studiyanti L. Workstation and posture improvement in cutting machine process using virtual modeling // IOP Conference Series: Materials Science and Engineering. – 2021. – Vol. 1072. – P. 012032. – DOI: 10.1088/1757-899X/1072/1/012032. 23. Soori M., Arezoo B. Virtual machining systems for CNC milling and turning machine tools: a review // International Journal of Engineering and Technology. – 2020. – Vol. 18. – P. 56–104. 24. The state of the art for numerical simulations of the effect of the microstructure and its evolution in the metal-cutting processes / H. Liu, X. Xu, J. Zhang, Z. Liu, Y. He, W. Zhao, Z.-q. Liu // International Journal of Machine Tools and Manufacture. – 2022. – Vol. 177. – P. 103890. – DOI: 10.1016/j.ijmachtools.2022.103890. 25. Nonlinearities of hardware-in-the-loop environment affecting turning process emulation / B. Beri, A. Miklos, D. Takacs, G. Stepan // International Journal of Machine Tools and Manufacture. – 2020. – Vol. 157. – P. 103611. – DOI: 10.1016/j.ijmachtools.2020.103611. 26. Soori M., Arezoo B., Habibi M. Virtual machining considering dimensional, geometrical and tool defl ection errors in three-axis CNC milling machines // Journal of Manufacturing Systems. – 2014. – Vol. 33 (4). – P. 498– 507. – DOI: 10.1016/j.jmsy.2014.04.007. 27. A multipoint method for 5-axis machining of triangulated surface models / R.K. Duvedi, S. Bedi, A. Batish, S. Mann // Computer-Aided Design. – 2014. – Vol. 52. – P. 17–26. – DOI: 10.1016/j.cad.2014.02.008. 28. Five-axis tool path generation in CNC machining of T-spline surfaces / W.F. Gan, J.Z. Fu, H.Y. Shen, Z.Y. Chen, Z.W. Lin // Computer-Aided Design. – 2014. – Vol. 52. – P. 51–63. – DOI: 10.1016/j.cad.2014.02.013. 29. Kiswanto G., Hendriko H., Duc E. An analytical method for obtaining cutter workpiece engagement during a semi-fi nish in fi ve-axis milling // Computer-Aided Design. – 2014. – Vol. 55. – P. 81–93. – DOI: 10.1016/j. cad.2014.05.003. 30. Cloud-based design and manufacturing: a new paradigm in digital manufacturing and design innovation / D. Wu, D.W. Rosen, L. Wang, D. Schaefer // Computer-Aided Design. – 2015. – Vol. 59. – P. 1–14. – DOI: 10.1016/j.cad.2014.07.006. 31. Кудинов В.А. Динамика станков. – М.: Машиностроение, 1967. – 359 с. 32. Selbsterregte Schwingungen anWerkzeugmaschinen / J. Tlusty, A. Polacek, C. Danek, J. Spacek. – Berlin: VerlagTechnik, 1962. – 320 p. 33. Merritt H.E. Theory of self-excited machine-tool chatter-contribution to machine tool chatter research // ASME Journal of Engineering for Industry. – 1965. – Vol. 87 (4). – P. 447–454. – DOI: 10.1115/1.3670861. 34. Altintas Y. Analytical prediction of three dimensional chatter stability in milling // JSME International Journal. Mechanical Systems, Machine Elements and Manufacturing. – 2001. – Vol. 44 (3). – P. 717–723. – DOI: 10.1299/jsmec.44.717. 35. Stépán G., Insperger T., Szalai R. Delay, parametric excitation, and the nonlinear dynamics of cutting processes // International Journal of Bifurcation and Chaos. – 2005. – Vol. 15 (9). – P. 2783–2798. – DOI: 10.1142/S0218127405013642. 36. Stépán G. Modelling nonlinear regenerative effects in metal cutting // Philosophical Transactions of

RkJQdWJsaXNoZXIy MTk0ODM1