Application of the synergistic concept in determining the CNC program for turning

OBRABOTKAMETALLOV MATERIAL SCIENCE Том 23 № 3 2021 EQUIPMEN . INSTRUM TS Vol. 4 No. 4 2022 clearly depends on the tool path, allows increasing the productivity in terms of machine time by up to two times. The developed approach and the given algorithms for determining the desired path of the forming motions and the corresponding NC program on the basis of synergetic matching of the external control with the changing dynamic characteristics of the workpiece can be extended to a large class of parts with a complex geometric shape. References 1. Prigogine I., Stengers I. Order out of chaos. London, Heinemann, 1984 (Russ. ed.: Prigozhin I., Stengers I. Poryadok iz khaosa. Moscow, Progress Publ., 1986. 432 p.). 2. Haken H. Advanced synergetics: instability hierarchies of self-organizing systems and devices. Berlin, New York, Springer, 1983 (Russ. ed.: Khaken G. Sinergetika: ierarkhii neustoichivostei v samoorganizuyushchikhsya sistemakh i ustroistvakh. Moscow, Mir Publ., 1985. 424 p.). 3. Kolesnikov A.A., ed. Sinergetika i problemy teorii upravleniya [Synergetics and problems in control theory]. Moscow, Fizmatlit, 2004. 504 p. ISBN 5-9221-0336-9. 4. Zakovorotny V.L., Flek M.B. Dinamika protsessa rezaniya. Sinergeticheskii podkhod [The dynamics of the cutting process. Synergistic approach]. Rostov-on-Don, Terra Publ., 2005. 880 p. 5. Zakovorotny V.L., Gvindjiliya V.E. Sinergeticheskaya kontseptsiya pri programmnom upravlenii protsessami obrabotki na metallorezhushchikh stankakh [Synergetic concept of software control of machining processes on metal-cutting machines]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = BMSTU Journal of Mechanical Engineering, 2021, no. 5 (734), pp. 24–36. DOI: 10.18698/0536-1044-2021-5-24-36. 6. Zakovorotny V.L., Gvindjiliya V.E. Sinergeticheskii podkhod k povysheniyu effektivnosti upravleniya protsessami obrabotki na metallorezhushchikh stankakh [Synergetic approach to improve the effi ciency of machining process control on metal-cutting machines]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 3, pp. 84–99. DOI: 10.17212/1994-6309-2021-23.3-84-99. 7. Zakovorotny V., Gvindjiliya V. Process control synergetics for metal-cutting machines. Journal of Vibration Engineering, 2022, vol. 24 (1), pp. 177–189. DOI: 10.21595/jve.2021.22087. 8. Zakovorotny V.L. Nelineinaya tribomekhanika [Nonlinear tribomechanics]. Rostov-on-Don, Don State Technical University Publ., 2000. 293 p. 9. Ryzhkin A.A. Sinergetika iznashivaniya instrumental’nykh materialov pri lezviinoi obrabotke [Synergetics of tool wear in cutting edge treatment]. Rostov-on-Don, Don State Technical University Publ., 2019. 289 p. ISBN 9785-7890-1669-5. 10. Kabaldin Yu.G., Shatagin D.A. Artifi cial intelligence and cyberphysical machining systems in digital production. Russian Engineering Research, 2020, vol. 40, no. 4, pp. 292–296. DOI: 10.3103/S1068798X20040115. Translated from Vestnik mashinostroeniya, 2020, no. 1, pp. 21–25. 11. Altintas Y., Kersting P., Biermann D., Budak E., Denkena B. Virtual technological systems for parts processing operations. CIRP Annals, 2014, vol. 63 (2), pp. 585–605. DOI: 10.1016/j.cirp.2014.05.007. 12. Arrazola P., Ozel T., Umbrello D., Davies M., Jawahir I. Recent advances in modelling of metal machining processes. CIRP Annals, 2013, vol. 62 (2), pp. 695–718. DOI: 10.1016/j.cirp.2013.05.006. 13. Pantyukhin O.V., Vasin S.A. Tsifrovoi dvoinik tekhnologicheskogo protsessa izgotovleniya izdelii spetsial’nogo naznacheniya [Digital double of the technological process of manufacturing special-purpose products]. Stankoinstrument, 2021, no. 1 (22), pp. 56–59. DOI: 10.1016/j.cirp.2013.05.006. (In Russian). 14. Altintas Y., Brecher C., Weck M., Witt S. Virtual machine tool. CIRP Annals, 2005, vol. 54 (2), pp. 115–138. DOI: 10.1016/S0007-8506(07)60022-5. 15. Erkorkmaz K., Altintas Y., Yeung C.-H. Virtual computer numerical control system. CIRP Annals, 2006, vol. 55 (1), pp. 399–402. DOI: 10.1016/S0007-8506(07)60444-2. 16. Ahamed As., Ahamed At., Katuwawala D., Ee T.T., Tan Z.H., Bajaj I.S., Wickramasurendra Th., Namazi H. Complexity-based analysis of the infl uence of machining parameters on the surface fi nish of drilled holes in drilling operation. Fractals, 2019, vol. 27 (6), p. 1950087. DOI: 10.1142/S0218348X19500877. 17. Kilic Z.M., Altintas Y. Generalized mechanics and dynamics of metal cutting operations for unifi ed modeling. International Journal of Machine Tools and Manufacture, 2016, vol. 104, pp. 1–13. DOI: 10.1016/j. ijmachtools.2016.01.006. 18. Estman L., Merdol D., Brask K.-G., Kalhori V., Altintas Y. Developing strategies for machining aerospace components using virtual machining tools. New Production Technologies in Aerospace Industry. Cham, Springer, 2014, pp. 63–68. DOI: 10.1007/978-3-319-01964-2_9.

RkJQdWJsaXNoZXIy MTk0ODM1