Application of the synergistic concept in determining the CNC program for turning

OBRABOTKAMETALLOV Vol. 23 No. 3 2021 MATERIAL SCIENCE EQUIPMENT. INSTRUMENTS 4 4 2 19. Yangui H., Zghal B., Kessentini A., Chevallier G., Rivière A., Haddar M., Karra Ch. Infl uence of cutting and geometrical parameters on the cutting force in milling. Engineering, 2010, vol. 2 (10), pp. 751–761. DOI: 10.4236/ eng.2010.210097. 20. Thasana W., Chianrabutra S. A comparison between simulation and experiment of virtual machining in CNC turning machine considering kinematic motion deviations, tool wear and workpiece defl ection errors. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2019, vol. 13 (1), p. 18-00250. DOI: 10.1299/ jamdsm.2019jamdsm0009. 21. Thasana W., Sugimura N., Iwamura K., Tanimizu Y. A study on estimation of three-dimensional tolerances based on simulation of virtual machining in turning processes including kinematic motion deviations. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2015, vol. 9 (1), p. 14-00507. DOI: 10.1299/ jamdsm.2015jamdsm0012. 22. Studiyanti L. Workstation and posture improvement in cutting machine process using virtual modeling. IOP Conference Series: Materials Science and Engineering, 2021, vol. 1072, p. 012032. DOI: 10.1088/1757899X/1072/1/012032. 23. Soori M., Arezoo B. Virtual machining systems for CNC milling and turning machine tools: a review. International Journal of Engineering and Technology, 2020, vol. 18, pp. 56–104. 24. Liu H., Xu X., Zhang J., Liu Z., He Y., Zhao W., Liu Z.-q. The state of the art for numerical simulations of the effect of the microstructure and its evolution in the metal-cutting processes. International Journal of Machine Tools and Manufacture, 2022, vol. 177, p. 103890. DOI: 10.1016/j.ijmachtools.2022.103890. 25. Beri B., Miklos A., Takacs D., Stepan G. Nonlinearities of hardware-in-the-loop environment affecting turning process emulation. International Journal of Machine Tools and Manufacture, 2020, vol. 157, p. 103611. DOI: 10.1016/j.ijmachtools.2020.103611. 26. Soori M., Arezoo B., Habibi M. Virtual machining with dimensional, geometric and tool defl ection errors on three-axis CNC milling machines. Journal of Manufacturing Systems, 2014, vol. 33 (4), pp. 498–507. DOI: 10.1016/j. jmsy.2014.04.007. 27. Duvedi R.K., Bedi S., Batish A., Mann S. Multi-point method for 5-axis processing of triangular surface models. Computer-Aided Design, 2014, vol. 52, pp. 17–26. DOI: 10.1016/j.cad.2014.02.008. 28. Gan V.F., Fu J.Z., Shen H.Yu., Chen Z.Yu., Lin Z.V. Creating a 5-axis toolpath in CNC machining T-spline surfaces. Computer-Aided Design, 2014, vol. 52, pp. 51–63. DOI: 10.1016/j.cad.2014.02.013. 29. Kiswanto G., Hendrikoh H., Duk E. An analytical method for obtaining cutter engagement with the workpiece during semi-fi nishing in fi ve-axis milling. Computer-Aided Design, 2014, vol. 55, pp. 81–93. DOI: 10.1016/j. cad.2014.05.003. 30. Wu D., Rosen D.W., Wang L., Schaefer D. Cloud design and manufacturing: a new paradigm in digital manufacturing and design innovation. Computer-Aided Design, 2015, vol. 59, pp. 1–14. DOI: 10.1016/j. cad.2014.07.006. 31. Kudinov V.A. Dinamika stankov [Dynamics of machine tools]. Moscow, Mashinostroenie Publ., 1967. 359 p. 32. Tlusty J., Polacek A., Danek C., Spacek J. Selbsterregte Schwingungen an Werkzeugmaschinen. Berlin, VerlagTechnik, 1962. 320 p. 33. Merritt H.E. The theory of the contribution of self-excited chatter of machine tools to the study of vibrations of machine tools. ASME Journal of Engineering for Industry, 1965, vol. 87 (4), pp. 447–454. DOI: 10.1115/1.3670861. 34. Altintas Y. Analytical prediction of 3D vibration in milling. JSME International Journal. Mechanical Systems, Machine Elements and Manufacturing, 2001, vol. 44 (3), pp. 717–723. DOI: 10.1299/jsmec.44.717. 35. Stépán G., Insperger T., Salai R. Delay, parametric excitation and nonlinear dynamics of cutting processes. International Journal of Bifurcation andChaos, 2005, vol. 15 (9), pp. 2783–2798. DOI: 10.1142/S0218127405013642. 36. Stépán G. Modeling of non-linear regenerative effects inmetal cutting. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, vol. 359 (1781), pp. 739–757. DOI: 10.1098/ rsta.2000.0753. 37. Reith M.J., Bachrathy D., Stepan G. Improving the stability of multi-cutter turning with detuned dynamics. Machining Science and Technology, 2016, vol. 20 (3), pp. 440–459. DOI: 10.1080/10910344.2016.1191029. 38. Voronov S.A., Kiselev I.A. Nelineinye zadachi dinamiki protsessov rezaniya [Nonlinear problems of cutting process dynamics]. Mashinostroenie i inzhenernoe obrazovanie = Mechanical Engineering and Engineering Education, 2017, no. 2 (51), pp. 9–23. 39. Rusinek R., Wiercigroch M., Wahi P. Infl uence of tool fl ank forces on complex dynamics of a cutting process. International Journal of Bifurcation and Chaos, 2014, vol. 24 (9), pp. 189–201. DOI: 10.1142/S0218127414501156.

RkJQdWJsaXNoZXIy MTk0ODM1